Tilapia in Intensive Co-culture
Tilapia in Intensive Co-culture

Edited by

Peter W. Perschbacher (retired)
Aquaculture/Fisheries Department
University of Arkansas at Pine Bluff
Pine Bluff, AR, United States

and

Robert R. Stickney (retired)
Department of Oceanography
Texas A&M University
College Station, TX, United States
We dedicate this book to Steve Serfling, pioneer and innovator in tilapia co-culture in intensive systems.

Contents

List of Contributors ix
Foreword xi
Randall Brummett xv
Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ecological Basis of Tilapia Co-culture Systems</td>
<td>Ana Milstein and Martha Hernández</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Tilapia Feeding Habits and Environmental Tolerances</td>
<td>Robert R. Stickney</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Historical Use of Tilapia in Intensive Co-culture</td>
<td>Peter W. Perschbacher</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>New Models and Rationales</td>
<td>Robert R. Stickney, Peter W. Perschbacher, and Nick Parker</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Sustainability Needs and Challenges: Marine Systems</td>
<td>Robert R. Stickney and Robert W. Brick</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Luminous Vibrio and the Greenwater Culture of the Tiger Shrimp Penaeus monodon with Tilapia</td>
<td>Gilda D. Lio-Po</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Tilapia–Shrimp Polyculture</td>
<td>Kevin M. Fitzsimmons and Erfan Shahkar</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>Sustainability Needs and Challenges: Freshwater Systems</td>
<td>Peter W. Perschbacher</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>Pond Co-culture with Catfish Research in the Americas, with Emphasis on Cage-Confined Tilapia</td>
<td>Peter W. Perschbacher</td>
<td>129</td>
</tr>
<tr>
<td>10</td>
<td>Tilapia Co-culture in Cages and In-pond Raceways</td>
<td>Michael Masser</td>
<td>148</td>
</tr>
<tr>
<td>11</td>
<td>Tilapia–Macrobrachium Polyculture</td>
<td>Michael B. New and Wagner C. Valenti</td>
<td>156</td>
</tr>
<tr>
<td>12</td>
<td>Tilapia in High-Rate Aquaculture Processes</td>
<td>David E. Brune</td>
<td>186</td>
</tr>
<tr>
<td>13</td>
<td>Tilapia Co-culture in Egypt</td>
<td>Abdel-Fattah M. El-Sayed</td>
<td>211</td>
</tr>
</tbody>
</table>
Chapter 14. Tilapia Co-culture in Israeli Fishponds and Reservoirs
Ana Milstein 237

Chapter 15. Aquaponics
Rebecca L. Nelson 246

Chapter 16. Nutrient Profiles of Tilapia
Ioannis T. Karapanagiotidis 261

Chapter 17. The Economics of Small-Scale Tilapia Aquaculture in the United States
Siddhartha Dasgupta and Richard C. Bryant 306

Appendix 1. Field Key to the Commonly Cultured Tilapias, with Species Synopses
Peter W. Perschbacher 319

Appendix 2. World Hybrid Tilapia Literature 1980–2014*
Frank J. Schwartz 324

Scientific Names Index 333
Topical Index 335

Color Plates appear after page 318
List of Contributors

Robert W. Brick (retired)
Division of Science, Technology, Engineering, and Mathematics
Blinn College
Bryan Campus, TX, United States

Randall Brummett
Environment and Natural Resources Department
World Bank
Washington, DC, United States

David E. Brune
Food Systems and Bioengineering
University of Missouri
Columbia, MO, United States

Richard C. Bryant
Aquaculture Research Center
Kentucky State University
Frankfort, KY, United States

Siddhartha Dasgupta
Aquaculture Research Center
Kentucky State University
Frankfort, KY, United States

Abdel-Fattah M. El-Sayed
Oceanography Department, Faculty of Science
Alexandria University
Alexandria, Egypt

Kevin M. Fitzsimmons
Department of Soil, Water, and Environmental Science
University of Arizona
Tucson, AZ, United States

Martha Hernández
Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del IPN-CINVESTAV Mérida, Spain

Ioannis T. Karapanagiotidis
Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences University of Thessaly Thessaly, Greece

Gilda D. Lio-Po (retired)
Fish Health Section, Aquaculture Department Southeast Asian Fisheries Development Center Tigbauan, Iloilo, Philippines

Michael Masser
Wildlife and Fisheries Sciences Texas A&M University College Station, TX, United States

Ana Milstein
Agricultural Research Organization-ARO Fish and Aquaculture Research Station Dor, M.P. Hof HaCarmel, Israel

Rebecca L. Nelson
Department of Biology University of Wisconsin-Stevens Point Stevens Point, WI, United States and Nelson and Pade, Inc. Montello, WI, United States
List of Contributors

Michael B. New
World Aquaculture Society and European Aquaculture Society
Marlow, Bucks, United Kingdom

Nick Parker
Texas Cooperative Fish and Wildlife Unit
Texas Tech University
Lubbock, TX, United States

Peter W. Perschbacher (retired)
Aquaculture/Fisheries Department
University of Arkansas at Pine Bluff
Pine Bluff, AR, United States

Frank J. Schwartz
Institute of Marine Sciences
University of North Carolina at Chapel Hill
Morehead City, NC, United States

Erfan Shahkar
Blue Aqua International (Thailand) Co. Ltd.
Bangkok, Thailand

Robert R. Stickney (retired)
Department of Oceanography
Texas A&M University
College Station, TX, United States

Wagner C. Valenti
Biosciences Institute
São Paulo State University
UNESP, Coastal Campus, São Vicente, Brazil
Foreword

Randall Brummett

Efficiency in Aquaculture

Improving the efficiency of the food production system to accommodate predicted increases in the human population, while protecting as much natural space and biodiversity as possible, has been the focus of much discussion in conservation and development circles. In an analysis of global food security in the context of the Anthropocene Epoch (Crutzen and Stoermer 2000), the UK Office of Science has proposed “Sustainable Intensification,” using less land and water to produce more food, another way of describing efficiency as the best way forward in reconciling the needs of people and biodiversity (Foresight 2011).

There are three components of efficiency as it relates to food production, in general, and aquaculture, in particular:

- Ecological efficiency
- Technical (or economic) efficiency
- Administrative efficiency (aka political economics or policy).

Ecological Efficiency

Ecological efficiency is sustainable intensification. The logic derives from the “Sharing vs Sparing” debate in ecology (Egan and Mortensen 2012); the essential question is: do we conserve more land and water and protect more biodiversity through low-intensity or organic systems, which produce less per unit area but use less chemicals and soil-damaging cultivation practices associated with the Green Revolution? or do we heavily intensify our culture systems to generate more food with higher external inputs and thus leave aside more wild space for nature?

Small-scale organic farms generate products grown with minimal external inputs but use an average of about 25% more land per unit of output than the typical green revolution farm, and up to nearly 50% in developing countries (Seufert et al. 2012). In regions with declining but increasingly wealthy populations that appreciate a simplified diet based on seasonally available local produce, a gradual shift to low-intensity farming might be workable. However, choosing this path in places where increasing populations need cheap food just to survive (the vast majority of places on the earth) will necessitate substantial imports of food from regions with land to spare, most of which are in biodiverse tropical developing countries. Within limits, results from practical application of low intensity versus green revolution farming systems seem to lean in favor of sparing as the best approach to biodiversity conservation in the space reserved for food production (Kleijn et al. 2006; Phalan et al. 2011). Species that play a major role in
local ecosystem function are often unwanted by farmers, both organic and green revolution, and so are removed, either by hand or herbicides. Even if removed by hand, habitat quality is determined not just by the lack of chemicals but also by genetic and structural diversity (e.g., old trees as nesting sites) both of which are dramatically reduced in virtually all farming systems, regardless of intensity.

As with ecosystems, generally, the optimum for biodiversity usually lies somewhere between the extremes of very low productivity and very high productivity (Fraser et al. 2015). A compromise approach that optimizes the use of chemicals, land, and water used in food production would probably lead to best long-term outcomes for the planet.

Technical Efficiency

Technical efficiency seeks to increase the profitability of production systems. To the extent that markets for environmental goods and services function properly, increasing the amount of output from the system per unit of input will drive improved profits.

Technical efficiency tends to improve over time as farmers work their way through the innumerable small problems that plague any new venture and is a major determinate of competitiveness in the marketplace. Often, and particularly in aquaculture, innovation is left entirely to the private sector with government extension services lagging far behind farmers in the state of the art. This leaves most of the new and more profitable ideas largely in the hands of the larger farms that can afford R&D programs and the implementation of new technology at scale.

One of the characteristics of aquaculture that make it interesting from a rural development perspective is that about 90% of producers are small scale. Aquaculture generates some 23 million jobs globally (FAO 2014) and represents a critical economy for parts of developing countries in Southeast Asia, Africa, and Latin America. Driving small-scale farmers out of business by allowing the market to become dominated by industrial-scale producers would be counterproductive to the global fight against poverty and food insecurity.

Administrative Efficiency

Administrative efficiency is the key to leveling the playing field for farmers to compete in a more sustainable global food production system. Managing multidimensional production systems that rely on cutting-edge technology is a business nightmare. Being a successful farmer using tried and true methods is already difficult. Add multiple cropping systems and innovative approaches that require local adaptation, and profitability generally plummets. This is the main reason why our food production systems remain dependent upon monocropping and the heavy use of pesticides and inorganic fertilizers. Subsidies, in the form of payment for ecosystem services (Kelsey Jack et al. 2008), are often required to help farmers through the often financially painful transition to more ecologically and technically efficient production systems.

Low-intensity farming systems compensate for their low returns to land by selling their produce at premium prices. This approach works economically in markets where prices are highly elastic and consumers have strong environmental sensitivities and the wherewithal to pay substantially more for their food. In reality, most consumers care little about the source of their food and could not afford to pay more even if they did care. Major seafood retailers report little to no margin for products marketed as sustainable (Coomes 2014) and
2.2 billion, over 30% of the world’s population lives on less than US$2.00 a day (World Bank 2015).

The integrated production systems described in this book are the engines of ecological and technical efficiency in aquaculture. By stocking a range of species that can more fully exploit the entire aquaculture ecosystem, organic waste can be recycled into sellable products. Reducing the need for chemicals by growing complimentary species that improve environmental quality and thus disease lowers the need for expensive medicines, aeration, and water renewal.

We should not have to face choices between food or nature and food or jobs. It is the responsibility of food security and conservation policy makers and development planners to develop efficient administrative and management mechanisms to transform ecologically and technically efficient technologies into environmentally friendly economic growth and food security.

References

Preface

To begin with, we wish to recognize the 18 coauthors, who have so generously donated their time and expertise to this endeavor. It is our hope it will further sustainable aquaculture, improve the image of tilapia culture, and help sustain the environment on which we all depend.

Sustainable agriculture has been broadly defined in the 1990 US Farm Bill as a “system which, over the long term, enhances environmental quality and the resource base on which agriculture depends, makes the most efficient use of nonrenewable resources and on-farm resources and integrates where appropriate biological cycles and controls, provides for basic human food and fiber needs, is economically viable, and enhances the quality of life for farmers and the society as a whole.” The justification for this book was the conviction, supported by research and practice, that tilapia in co-culture contributes to sustainable aquaculture. Co-culture in our opinion indicates the addition of one or more species to an existing aquaculture system, as in tilapia added to penaeid shrimp ponds, whether freely swimming or in cages. Drs New and Valenti in their Chapter 11 consider polyculture several species stocked together and freely swimming and co-culture the confinement/separation of the co-cultured species within the system, as in tilapia in cages in prawn ponds. Co-culture is also a recent designation for polyculture and is used as such in this book by several authors.

Tilapia culture is an aquaculture avalanche at present, moving toward displacing one or more carp species as the top-cultured white-fleshed fish. Along with this phenomenon is the growing practice of intensive monoculture for tilapia and other cultured species in freshwater (the most valuable and scarce resource). Sustainable development requires another look at the benefit tilapia co-culture can add to monoculture systems to clean the environment and add high value production. We hope to highlight this aspect of tilapia as a premier extractive organism to responsibly further needed intensification and aquaculture production.

Tilapia culture, though ancient (perhaps first in Egypt and contemporary with Chinese polyculture) is a recent commercial development. It has undergone at least three epochs. The first period, in the early twentieth century, was the feed the world, and especially the poorest of the poor, with tilapia. Introduced around the world, failures were due to uncontrolled reproduction. However, many studies were showing it is one of the few fish that can utilize cyanobacteria and other natural aquatic food items efficiently.

The second epoch, beginning in the mid-twentieth century, resulted from research that led to approaches to produce sex-reversed and monosex offspring of hybrids and allowed commercial, intensive monoculture. The issue then was the lack of recognition by the consumers in the Western world.

The third epoch began in the early twenty-first century with the penetration of tilapia into the largest Western seafood market, the United States. What followed was a marketing and production explosion. Tilapia is truly and finally the “aquatic chicken.”

We focus on the three major species: Nile, blue, and Mozambique tilapia, along with red hybrids. They currently have well-established and efficient culture practices and markets. In
the future, more native species will and should be employed in their native countries.

James Rakocy (2005), a recognized tilapia aquaponics researcher, indicated in the FAO Cultured Species Information Programme fact sheet for Nile tilapia that trends in tilapia culture will be pond polyculture, new strains/selective breeding, genetically male tilapia (GMT) breeding procedures, and intensive cost-effective recirculating aquaculture systems (RAS). One of the significant cost-savings benefits from tilapia co-culture in freshwater may be control of algal populations and consequential off-flavors. Hargreaves (2003) concluded that although the effect of filter-feeding fish on algal biomass is questionable, the positive effects on community structure by reducing large filamentous and colonial cyanobacteria are more definite.

Prokaryotes, including algae and cyanobacteria (which are photosynthetic bacteria), are thought to equal plants in comprising the major biomass of the world, given their higher reproduction rates (Hunter 2010). Larger amounts of nitrogenous and phosphorus compounds, including proteins, are contained in this group than higher plants. Tilapia, and in particular Nile tilapia, have the potential to convert these food sources into edible protein and lipids, having evolved on naturally occurring cyanobacteria in Africa. Tilapia and algae, including seaweeds and bacterial blue-greens (May 2014), are and will be increasingly important human food supplies. Other cultured species may also soon utilize algal proteins and lipids in prepared diets, replacing fish meal and fish oil (Perschbacher 2013).

We realize that the chapters in this book include a good deal of historical information and literature citations that are duplicative to some degree. For example, the appearance of tilapia in artwork discovered in Egyptian pyramids and development of China are mentioned by several of the authors. Other examples are methods developed to produce all-male tilapia and descriptions of the food habits of various tilapia species. We have not attempted to reduce duplications as we want each chapter to stand on its own.

We acknowledge our mentors in responsible, ecological aquaculture: John Bardach, Homer Buck, Claude Boyd, Kirk Strawn, Hugh Swingle, and many others, including colleagues Jim McVey, Bill Wurts, and Barry Costa-Pierce, who have had an influence on how we think about how aquaculture activities can benefit from as well as impact the environment and who have provided opinions on how those benefits can be optimized and impacts can be ameliorated. Our wives, Virginia Brady Perschbacher and Carolan Stickney, supported this “retirement” project and are appreciated beyond words. The staff of Wiley, Nigel Balmforth, Delia Sandford, and Kelvin Matthews, were true partners across the pond, and World Aquaculture Society publication heads present and former, Joe Tomasso and Wade Watanabe, were key to starting this project and were helpful and encouraging.

References

Chapter 1
Ecological Basis of Tilapia Co-culture Systems

Ana Milstein and Martha Hernández

Abstract: The joint culture of multiple species or even multiple life stages of the same species in the same system is a long-practiced method identified as co-culture or polyculture. Stocking several species with different food habits allows the effective exploitation of a variety of available foods in the ecosystem, thus improving economics and sustainability. Tilapia are omnivorous fishes grown in co-culture with a variety of other fish and crustacean species for production purposes, and/or environmental control, and/or with a predatory fish species to control tilapia recruitment in growout ponds. Tilapia co-culture is carried out in fishponds, rice fields, cages and pens within ponds, periphyton-based ponds, and partitioned and other intensive aquaculture systems. In all cases, pond ecology will largely be determined by the relationships among the different co-cultured species, the environment, and management decisions and procedures that are applied.

The ecological basis governing the functioning of aquatic ecosystems applies to aquaculture systems. The components are primary producers, consumers, and decomposers, among which predator–prey and competition relationships determine nutrient and organic matter flows. Over this general pattern, the relationships between organisms and environment differ with the cultured species involved, and there are differences related to specific characteristics of each production system and its management. This chapter presents the role of tilapia in the pond ecosystem, ecological aspects of tilapia co-culture with fish and crustaceans in several production systems, tilapia co-culture as a management tool for environmental control, and tilapia co-culture with a predator to control tilapia recruitment. Examples of synergistic mutual effects through the food web and environment are described for tilapia co-culture with carp in ponds and in rice fields; tilapia co-culture with catfish in ponds; cage-cum-pond and partitioned systems; and tilapia co-culture with crustaceans in ponds; cage-cum-pond; and periphyton-based ponds. Conceptual graphic models of the ecosystem functioning for some of those co-cultures are presented.

Keywords: ecology, food web, polyculture, tilapia
Introduction

The joint culture of multiple species or even multiple life stages of the same species in the same system is a long-practiced method indistinctly called co-culture or polyculture. Stocking several species with different feeding habits allows effectively exploiting a variety of available foods in the ecosystem, thus improving economics and sustainability. In aquaculture systems, in which this technology is practiced with a wide range of species combinations (Milstein 2005), wastes produced by one species may be inputs for other species, and supplemented organic wastes and/or feeds act as fertilizers of the heterotrophic and autotrophic food chains besides being utilized directly by the target cultured organisms.

In such co-culture systems, stocking density is a key factor that affects the amount of natural food available per fish and the level of supplementary feeding required (Hepher and Pruginin 1981). On the other hand, synergism and antagonism between ecologically different species depend on stocking densities of each fish and on food availability. With increasing stocking density, competition increases, fish shift to less efficient foods as their preferred sources become depleted, and fish production slows down. A balanced combination of fish species maximizes synergistic and minimizes antagonistic fish–fish and fish–environment relationships (Milstein 1992). The idea of multispecies fish co-culture was derived originally from the Chinese philosophy of harmony. Chinese fish farmers have so managed their ponds that the fish they stock harmonize with available fish foods and among fish species within the pond (Tang 1970). Over 60% of world aquaculture production occurs in China (FAO 2014b), where polyculture is the main growout technology employed.

Tilapia of several species are important target organisms in warm-water aquaculture. Tilapia are often co-cultured with other fish or crustacean species for production purposes, and/or environmental control, and/or with a predatory fish species to control tilapia recruitment in growout ponds. In all cases, pond ecology will largely be determined by the relationships among the different species co-cultured, the environment, and the management decisions and procedures applied.

Aquaculture Production: Ecology in Tilapia Co-culture Systems

The ecological basis governing the functioning of aquatic ecosystems applies to aquaculture systems. The components are primary producers, consumers, and decomposers, among which predator–prey and competition relationships determine nutrient and organic matter flows. Over this general pattern, the relationships between organisms and environment differ with the cultured species involved, and there are differences related to specific characteristics of each production system and its management.

Fishpond Ecosystem

Driving forces in a fishpond ecosystem are schematically presented in Figure 1.1. Phytoplankton, the assemblage of microscopic autotrophic organisms in the water column, is a key driver in such green water ecosystems. Through photosynthesis, the phytoplankton community captures energy from the sun to produce biomass that constitutes food for many zooplanktonic organisms (e.g., rotifers, cladocerans, copepods, and nauplii) and filter feeding fish (e.g., silver
carp *Hypophthalmichthys molitrix*, mrigal or white carp *Cirrhinus mrigala*, tilapia). Phytoplankton liberate oxygen to the water column, which is used by fish and various other animals in the water body (zooplankton) and pond bottom (benthos) for respiration and by bacteria for nitrification and aerobic decomposition. Dead phytoplankton settle on the pond bottom contributing to detritus formation that provides food for some benthic organisms. Phytoplankton remove carbon dioxide from the water, leading to increased water pH and nutrients (mainly ammonia and orthophosphate). Under high pH, ammonium turns into the toxic ammonia form, so its removal by phytoplankton and nitrifying bacteria helps maintain a healthy pond environment. Fish, zooplankton, and benthos liberate carbon dioxide into the water through respiration, ammonia through excretion, and organic matter in their feces, molts (in the case of invertebrates), and dead bodies. Organic materials originating in the water column or from the terrestrial environment accumulate on the pond bottom. These include waste feeds, feces, dead organisms, crustacean molts, leaves, and other materials with low-energy content that provide substrates for bacteria colonization. Bacteria decompose those materials turning the resulting detritus available as food for benthic organisms (e.g., chironomid insect larvae, freshwater prawn) and bottom feeding fish (e.g., catfish, common carp). Bacterial mineralization of organic matter releases orthophosphate into the water, which is the phosphorus form that autotrophic organisms can absorb. Bacterial mineralization of proteins releases ammonia into the water. Phytoplankton and nitrifying bacteria in the water column compete for ammonia, which is more efficiently absorbed by the former. Bioturbation of sediments by benthic fish and invertebrates...
Tilapia in Intensive Co-culture

(reviewed by Adámek and Maršálek 2013) favors nutrient diffusion into the water column.

Role of Tilapia in the Fishpond Ecosystem

The common name tilapia refers to a group of about 70 species of warm-water cichlid species in the genera Tilapia, Sarotherodon, and Oreochromis, which are native to Africa and the Middle East. Various tilapia species were introduced into many tropical, subtropical, and temperate regions of the world during the second half of the twentieth century. At present about 10 species and their hybrids are used in aquaculture, with Asia being the largest tilapia-producing continent. The aquaculture of Nile tilapia (Oreochromis niloticus) goes back to Ancient Egypt and nowadays this is by far the most widely cultured tilapia species. It has become an important cultured species in many Asian countries, including Bangladesh, China, Indonesia, Malaysia, Myanmar, the Philippines, Sri Lanka, Thailand, and Vietnam. Blue tilapia (Oreochromis aureus) is the northernmost natural occurring species, hence it is more cold tolerant than other tilapia species. The Mozambique tilapia (Oreochromis mossambicus) is native to eastward-flowing rivers of central and southern Africa. It grows slower than Nile and blue tilapia, withstands a wide range of water temperatures, and is one of the most salt-tolerant tilapia species.

Tilapia species are basically omnivorous, feeding on phytoplankton, zooplankton, periphyton, aquatic plants, small invertebrates, benthic fauna, detritus with its associated bacteria, commercial feeds, and agricultural by-products. Unlike most fish species, most tilapia species can easily digest the tough cells of blue-green algae (cyanobacteria) due to their high stomach acidity, which can have a pH as low as 1.4 depending on species (Moriarty 1973; Getachew 1989; Jančula et al. 2008; Riedel and Costa-Pierce 2005; Hlophe et al. 2014). Some tilapia species, such as Nile tilapia, entrap suspended particles (including phytoplankton and bacteria) on mucous in the buccal cavity, although their main source of nutrition is obtained by surface grazing on periphyton mats (FAO 2014a). Other species, such as the blue tilapia, can modify their feeding habits from pelagic filter feeding, such as in Lake Kinnereth (Spataru and Zorn 1978) to bottom grazing in polyculture ponds (Spataru 1976) when plankton densities are low (Mallin 1985), becoming mostly detritivorous (Jiménez-Badillo and Nepita-Villanueva 2000).

Tilapia are successfully co-cultured with a variety of fish and crustacean species in fishponds, rice fields, cages within ponds, periphyton-based ponds, and partitioned and other intensive aquaculture systems. When stocking densities of the involved species are balanced, synergistic effects among species lead to increased food resources for each species and improved water quality, usually resulting in better fish growth (Milstein 1992). Examples of synergistic mutual effects through the food web and environment when stocking densities of the co-cultured species are balanced are herein presented for some combinations of species and culture systems.

Tilapia Co-culture with Carp in Ponds

Polyculture of two to seven carp species with different feeding habits is a traditional and common practice in Asia that has also spread to other continents (Edwards 2004; Milstein 2005). With the development and expansion of tilapia culture in the second half of the
 twentieth century, these omnivorous African and Middle Eastern fishes were incorporated into Asian carp ponds as a way to diversify and increase fish production. For example, in Bangladesh, the addition of Nile tilapia at 2,000/ha to a co-culture of bottom feeding common carp (*Cyprinus carpio*) and phytoplankton filter feeding rohu carp (*Labeo rohita*), stocked at 5,000 and 15,000/ha, increased nutrient concentrations in the water column, reduced total suspended solids and phytoplankton biomass, and resulted in additional fish production without affecting the growth and production of rohu and common carp (Rahman *et al.* 2008). In another study, the addition of 2,200 Nile tilapia to a polyculture system that included the filter feeders catla (*Catla catla*), rohu, and silver carp; the bottom-dwelling giant freshwater prawn (*Macrobrachium rosenbergii*); and the small carp mola (*Amblypharyngodon mola*) stocked, respectively, at 1,000, 3,000, 3,000, 4,000, and 10,000 individuals/ha, which led to increased yields of prawn and silver carp and to higher total yields and economic benefits as opposed to the absence of tilapia (Shahin *et al.* 2011).

Tilapia–carp synergistic mutual effects through the food web and the environment in earthen ponds are exemplified in Figure 1.2, which was mainly based on the study by Milstein and Svirsky (1996) of hybrid tilapia (*Oreochromis niloticus* × *O. aureus*) and common carp co-culture at stocking densities of 7,000–12,500 and 1,600–4,000/ha, under Israeli fish farm conditions. When searching for food, common carp stir the mud of the pond bottom; and the more intensively the larger the fish (Valdenberg *et al.* 2006; Adámek and Maršálek 2013), and more intensively than other bottom feeders such as the Indian carp

![Figure 1.2](image-url) Synergistic mutual effects through the food web and environment between hybrid tilapia (*Oreochromis niloticus* × *O. aureus*) and the bottom feeder common carp (*Cyprinus carpio*). Adapted from Milstein and Svirsky (1996).
Tilapia in Intensive Co-culture

This common carp behavior increased contact between bacteria in sediments and water, promoting aerobic processes such as rapid uptake of inorganic nitrogen compounds needed by bacteria for body protein buildup. This also made nutrients in the sediments available for algae shifting phytoplankton competition toward larger-sized algae, mainly the blue-green Microcystis sp. that bloomed. This resulted in a decrease in smaller algae species, which otherwise would accumulate because hybrid tilapia cannot graze on them. The increased phytoplankton production improved the oxygen regime in the pond and food availability for tilapia that grew better (average 2 g/day) than in monoculture (average 1.3 g/day). In turn, the tilapia hybrids fed on the organic sediment of the pond bottom consuming particles resuspended by carp, thus preventing an increase in organic load in the sediment and the concomitant development of anaerobic conditions. In addition, tilapia grazing in the water column strongly stimulated the development of a bloom of the blue-green alga Microcystis, keeping the algal population in the log phase of growth that maximizes photosynthesis and net primary production. The improved oxygen regime in the pond produced better growth of common carp in co-culture with tilapia hybrids (average 4.1 g/day) than in monoculture (average 3.2 g/day).

Tilapia Co-culture with Carp in Rice Fields

In China and South and Southeast Asia, Nile tilapia are often stocked in rice fields (Fig. 1.3). The integration of fish into rice farming provides protein, especially for subsistence farmers who manage rain-fed agricultural systems. Relationships in the paddy–fish ecological system are exemplified in Figure 1.4, which was mainly based on the descriptions by Liu and Cai (1998) and Lu and Li (2006). Rice fields provide shade, shelter, and organic matter for fish, which in turn oxygenate soil and water, eat rice insect pests, and favor nutrient recycling. Shade reduces water temperature.

Figure 1.3 Paddy–fish system in Bangladesh. Photograph by Ana Milstein.
that in summer may reach lethal levels for fish and also limit phytoplankton development. The decaying leaves of rice favor development of microorganisms and detritus, which are important sources of fish food. Detritus, phytoplankton, zooplankton, and benthic invertebrates in the paddies serve as the natural food for fish. Fish excreta and dead organisms contribute to detritus and serve as natural fertilizers for rice and soil enrichment. Fish movement and feeding on the bottom detritus help loosen the surface soil on which rice is planted, increasing permeability and oxygen content to the soil, and thus favoring the absorption of nutrients by the paddy but also by unwanted aquatic vegetation. This bottom activity also liberates nutrients into the water making them available for phytoplankton. Fish respiration provides carbon dioxide that promotes photosynthetic activity. Fish feeding on the unwanted aquatic plants (mainly by grass carp, *Ctenopharyngodon idella*) reduce competition for light, space, and nutrients between rice and other macrophytes. Fish feeding on insect pests (mainly detritivores such as tilapia and common carp) reduce the need to apply pesticides. The effect is the enhanced production of rice in addition to a fish crop, along with a substantial diminution in the use of commercial fertilizers and pesticides.

In Vietnamese rice fields, Nile tilapia is most often reared with common carp and silver barb (*Barbonymus (=Barbodes) gonionotus*). Fish production is determined by rice management factors rather than by a fish polyculture strategy (Vromant et al. 2002). In this approach of intensive rice culture combined with extensive fish culture, fish yields are usually very low (about 300 kg/ha) since the rice field is not very suitable for fish production: the aquatic phase is temporary; dissolved oxygen levels and temperature values often exceed the fish tolerance limits; and shading by the rice crop keeps phytoplankton and zooplankton densities low. Accordingly, rice–fish systems need a trench or other type of refuge area for
the fish within or adjacent to the rice field. Besides suppressing unwanted vegetation in the rice fields, the presence of the fish increases water turbidity in the trench through suspension of mineral and organic material due to fish perturbation; this increases the availability of nutrients, resulting in higher amounts of phytoplankton and protozoa production in the trench, supplying reasonable amounts of phytoplankton and zooplankton to the fish (Vromant et al. 2001). Vromant et al. (2002) analyzed data generated in eight experiments in such rice–fish systems, where Nile tilapia constituted 7–30% of the fish stocked and total stocking density was 0.5–2.0 fish/m². They found that Nile tilapia often lacks food in rice fields, which increases intraspecific competition. As the growing season progresses and plankton abundance decreases due to increased rice biomass and consequent shading by the rice canopy, Nile tilapia shift to feeding on detritus, which increases interspecific competition with common carp. To improve the rice–fish system, those authors suggest either maintaining the current fish species combination but calculating their stocking density according to the trench area (not to the trench + rice-field as is the common practice) and increasing nutrient inputs in the trench (extra feed, fertilizing, manuring) to create distinguished trophic niches for the Nile tilapia and common carp, or omitting either Nile tilapia or common carp from the polyculture if increasing inputs is not possible.

Tilapia Co-culture with Catfish

Joint culture of several tilapia and catfish species is carried out in various culture systems. In Egyptian ponds, Nile tilapia and African catfish (Clarias gariepinus) when co-cultured in several proportions at a total stocking density of 30,000 fish/ha resulted in similar tilapia harvesting weight and growth rate compared to tilapia monoculture, better catfish growth rate than in catfish monoculture, and higher net profit in co-culture (Ibrahim and El Naggar 2010). In cage-cum-pond and pen-cum-pond systems in Asia (Yang and Lin 2000), high-valued fish species are stocked in cages and filter-feeding fish species are stocked free in the pond to utilize natural foods derived from cage wastes. A series of pond experiments carried out in Thailand integrating the intensive culture of hybrid catfish (Clarias macrocephalus × C. gariepinus) in cages or pens receiving formulated feed (stocking density equivalent to 3.5–25.0/m²) and of Nile tilapia with natural food in the open pond (stocking density 2/m²) showed that Nile tilapia can effectively recover nutrients contained in wastewater of intensive catfish culture while providing additional fish production (Lin and Diana 1995; Lin and Yi 2003; Yi et al. 2003).

In the southern United States, several channel catfish (Ictalurus punctatus) intensive culture facilities in which water flows through compartments containing either channel catfish or secondary species (including tilapia) were reviewed by Tucker et al. (2014). In those systems, energy is required to circulate the water, channel catfish are fed industrial feeds, and the secondary species feed on natural foods and wastes from the channel catfish compartments. In some of those facilities, the objective is to produce extra fish on otherwise unused food in catfish ponds, while in others the objective is also to provide a grazer to harvest phytoplankton and zooplankton, maintaining good water quality in the system. The ecology of those and other photosynthetic suspended-growth systems in aquaculture were reviewed by Hargreaves (2006).
Tilapia Co-culture with Crustaceans

Tilapia may be co-cultured with prawn (mainly *Macrobrachium rosenbergii*), crayfish (e.g., Rouse and Kahn 1998; Barki et al. 2001; Karplus et al. 2001; Ponce-Marban et al. 2005), and some marine shrimp species (e.g., Wang et al. 1998; Tian et al. 2001; Saelee et al. 2002; Yi et al. 2002; Yi and Fitzsimmons 2004; Cruz et al. 2008; Yuan et al. 2010; Sun et al. 2011; Bessa et al. 2012; Hernández-Barraza et al. 2013). This is done in several types of culture systems as a way to improve productivity, profitability, and nutrient utilization in relation to crustacean monoculture.

The co-culture of Nile tilapia with the giant freshwater prawn *M. rosenbergii* has expanded in tropical–subtropical regions. Studies have been done with both species free in regular fishponds in Bangladesh (Uddin et al. 2007), Brazil (dos Santos and Valenti 2002), Egypt (Rouse et al. 1987), Israel (Mires 1987), Puerto Rico (García-Pérez et al. 2000), Saudi Arabia (Siddiqui et al. 1996), and the United States (Tidwell et al. 2010). Co-culture of tilapia and giant prawn has also been conducted in rice paddies in Egypt (Sadek and Moreau 1998), with Nile tilapia in cages or hapas and the prawn free in the pond in Thailand (Fig. 1.5) and the United States (Danaher et al. 2007; Tidwell et al. 2000, 2010), and in periphyton-based ponds in Bangladesh (Uddin et al. 2007; Asaduzzaman et al. 2009; Wahab et al. 2012, Fig. 1.6). Those studies showed that in tilapia–prawn co-culture (stocking density 0.5–2 tilapia/m², 2–7 prawn/m²) with both species free in the pond or paddy, the tilapia were not affected by the presence of prawn but the prawn often attained lower harvesting weight and yields in the presence of tilapia, but the combined total yield was higher in the co-culture than in monoculture. When tilapia were confined in cages suspended in prawn ponds (stocking density equivalent to 0.5–1.0 tilapia/m² of pond, 6–7 prawn/m²), prawn performance was similar or better in the presence of tilapia than in monoculture, and total pond production increased in relation to prawn monoculture ponds.

Figure 1.5 Co-culture of Nile tilapia in hapas with freshwater prawn free on the pond bottom in a fish farm in Thailand. Photograph by Ana Milstein.
In periphyton-based aquaculture systems (reviewed by van Dam et al. 2002; Azim et al. 2005; Milstein 2012; Milstein et al. 2013), substrates were installed in the water column to promote the development of microalgae, bacteria, detritus, and small animals on them. Periphyton-based aquaculture systems offer the possibility of increasing both primary productivity and food availability for cultured organisms able to graze on periphyton, hence increasing aquaculture production. In periphyton-based ponds, the co-culture of tilapia with freshwater prawn provides shelter for the latter and additional natural food for both species, improving their survival, growth, and production. In Bangladesh, the technology was developed for poverty alleviation and nutritional security for the households of poor farmers, with a suggested stocking ratio of Nile tilapia and freshwater prawn of 3:1 at a combined stocking density of 30,000 individuals/ha (Wahab et al. 2012). The addition of tilapia and periphyton substrates was shown to benefit the prawn culture through reducing toxic inorganic nitrogenous compounds in the water, enhancing the utilization of natural foods, improving prawn survival, and increasing production and economic benefit (Uddin et al. 2007, 2009; Hasan et al. 2012; Ahsan et al. 2014).

Tilapia–prawn relationships through the food web and the environment in periphyton-based ponds are exemplified in Figure 1.7. The addition of rigid surfaces in the oxygenated water column allows the development of attached photosynthetic organisms as well as aerobic decomposing bacteria and nitrifying bacteria. Most periphyton development occurs in the upper water layers where photosynthesis take place, while in the deeper and darker water only decomposition and nitrification takes place and there is less periphyton biomass. The attached periphytic algae compete with phytoplankton for light and nutrients. The nitrifying bacteria in the periphyton and in the pond sediments compete with attached and floating algae for ammonia. Tilapia feed mostly in the upper water column on periphyton, phytoplankton, and zooplankton. They may also feed
Environmental Control: Tilapia Co-culture as a Management Tool

Fish feeding habits can be utilized as an environmental management tool. In Israel, water quality in drinking water reservoirs of the National Water Carrier is managed through fish stocking, with each species having a different task according to its feeding habits. Taking advantage of the detritivorous behavior of blue tilapia, that species is stocked to control bad tastes and odors originating in sediments (Leventer 1979; Rothbard 2008).

In Asian rice–fish farming, fish are viewed as a tool within an integrated pest management (IPM) system to make rice production more sustainable and environmentally friendly. The introduction of fish into the rice paddies has been shown to reduce the need for pesticides (Fig. 1.4), increase farm household income, and diversify agriculture production. Omnivorous fish such as Nile tilapia can prey on rice plant pests and, as a result, the use of pesticides can be substantially reduced in relation to rice monoculture (Liu and Cai 1998; Berg 2002; Lu and Li 2006; Halwart et al. 2012).

In the southern United States, off-flavor is a serious problem in channel catfish culture, as described by Hargreaves (2003), Perschbacher (2003a), Zimba and Grimm (2003), and Smith et al. (2008), among others. The problem is
Tilapia in Intensive Co-culture

also discussed in Chapter 9. Typical pond management includes high fish stocking densities and feeding rates that result in eutrophic to hypereutrophic water quality conditions with prolific growth of algae during summer, particularly cyanobacteria. Cyanobacteria produce a number of secondary metabolites, including compounds imparting off-flavor to the water and fish. Fish are exposed to those compounds mainly through absorption of dissolved compounds from the water column and also through the ingestion of cyanobacteria, and consumption of contaminated prey or detritus. Ingestion of cyanobacteria can be accidental (catfish ingest surface scum while feeding on floating food pellets) or intentional (planktivorous tilapia and other fish species), with accidental ingestion more likely to occur in the presence of dense blooms. Fish with off-flavor are not acceptable for commercial processing and sale. Depuration of absorbed off-flavors by fish may require days to weeks. Collectively, off-flavor compounds result in inconsistent cash flow and sales, increased feeding costs associated with increased holding times, and the increased potential for disease/predation losses. Blue tilapia, a fish that can graze on cyanobacteria in the water column and on the pond bottom, has been used to prevent environment-derived off-flavors in channel catfish ponds. In fishponds, Torrans and Lowell (1987) found that channel catfish in polyculture with blue tilapia (stocked at 10,000 and 5,000 fish/ha) experienced off-flavor 8.3% of the times samples were taken compared with 62.5% for catfish reared in monoculture. In partitioned aquaculture systems (PAS), systems in which fish production and water quality control through phytoplankton are carried out in separate but linked compartments, the more herbivorous Nile tilapia has been stocked to manage algae populations and improve water quality for channel catfish. While catfish are fed, tilapia are not to ensure consumption of phytoplankton to provide algae control. In such a system, Nile tilapia successfully reduced cyanobacteria populations, shifting the primary producer community to the more desirable dominance of green algae, which resulted in a reduction in channel catfish off-flavors (Perschbacher 2003b; Brune et al. 2004; Tucker et al. 2014).

Tilapia Recruitment Control: Tilapia Co-culture with a Predator1

One of the major problems in tilapia culture is their early and excessive spawning in growout ponds. Under natural conditions Nile tilapia mature at 150–200 g, while under culture conditions maturation can occur at sizes as small as 30–50 g (De Graaf et al. 1999). This leads to overpopulation, which increases competition for food, oxygen, and space and reduces the growth of initially stocked fish, to the extent that they may not reach commercial size. Thus, tilapia recruitment control is essential for successful and profitable culture, particularly in regions where there is no market for small fish.

To cope with this problem, several methods have been proposed, including monosex culture (hybridization, manual sexing or grading, sex reversal by androgenic hormones), cage culture, high density stocking, selective harvesting, and use of predators (Mair and Little 1991; Fagbenro 2004). The use of predators results in a tilapia–predator co-culture, and the other methods can be applied when tilapia are cultured alone or in co-culture with other species. Which method to apply depends on

1This section is based on part of the PhD thesis of Martha Hernández, carried out at “Centro de Investigación y de Estudios Avanzados del IPN – CINVESTAV, Unidad Mérida, Yucatán, México,” under the direction of Dr Eucario Gasca-Leyva.
economic considerations, feed costs and availability, and consumer preferences (De Graaf et al. 2005). For example, due to human health and possible environmental effects, the use of hormones for sex reversal needs a license in the United States and is forbidden in Europe (El-Sayed 2006). In Asia and Africa, where rural markets demand cheap tilapia of <200 g (Brummett 2000), early tilapia reproduction is not a critical problem if feeds are supplied (De Graaf et al. 1996). But if tilapia recruitment control is to be performed, stocking predators seems an appropriate technique to supply those rural markets compared to the use of expensive all-male tilapia methods; the latter are more appropriate when the targets are urban and international markets, which demand and can afford larger sized tilapia (Little and Edwards 2004).

Fish–environment relationships involved in tilapia recruitment control by predator fish are exemplified in Figure 1.8. In tilapia–predator co-cultures, the omnivorous tilapia feed on a wide range of natural foods as well as commercial feeds if offered, while the predators feed on the larvae and fingerlings released by the tilapia (as well as on commercial feeds if offered). The reduction/elimination of the excess tilapia increases natural food and feed availability for the stocked tilapia and reduces the amount of oxygen consumption and ammonia excretion due to the reduction or elimination of tilapia recruits. Thus, intraspecific competition is reduced and environmental conditions in the pond are improved (Milstein et al. 2000). The expected overall result of tilapia–predator co-culture is increased production of the stocked fish.

A number of predatory species, mostly catfishes and cichlids, have been evaluated in their ability to control recruitment of several tilapia species (Table 1.1). The efficiency of

Figure 1.8 Fish–environment relationships involved in tilapia recruitment control by a predator fish. The predators represented are African snakehead *Parachanna obscura*, red drum *Sciaenops ocellatus*, and African catfish *Clarias gariepinus*.
Table 1.1 Species stocked in tilapia–predator co-cultures.

<table>
<thead>
<tr>
<th>Tilapia prey</th>
<th>Predator</th>
<th>Author (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>El-Gamal et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El-Neaggar (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oyelese (2007)</td>
</tr>
<tr>
<td></td>
<td>Heteroclarias bidorsalis × C. gariepinus</td>
<td>Fagbenro (2000)</td>
</tr>
<tr>
<td></td>
<td>Heteroclarias longifilis × C. gariepinus</td>
<td>Fagbenro (2000)</td>
</tr>
<tr>
<td></td>
<td>Clarias spp.</td>
<td>Sadeu et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Clarias macrocephalus × C. gariepinus</td>
<td>Lin and Diana (1995)</td>
</tr>
<tr>
<td></td>
<td>Heterobranchus longifilis</td>
<td>Yi et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>Lates niloticus (Nile perch)</td>
<td>Bedawi (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El Gamal (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El-Gamal et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ofori (1988)</td>
</tr>
<tr>
<td></td>
<td>Tor putitora (Sahar)</td>
<td>Shrestha et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Cichlasoma urophthalmus (Mayan cichlid)</td>
<td>Hernández et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Hemichromis fasciatus (jewel cichlid)</td>
<td>Ross and Martinez (1990)</td>
</tr>
<tr>
<td></td>
<td>Micropterus salmoides (largemouth bass)</td>
<td>McGinty (1985)</td>
</tr>
<tr>
<td>O. aureus (blue tilapia)</td>
<td>Cichlasoma managuense (jaguar guapote)</td>
<td>Dunseth and Bayne (1978)</td>
</tr>
<tr>
<td>O. niloticus × O. aureus</td>
<td>Morone saxatilis × M. chrysops (hybrid bass)</td>
<td>Milstein et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Sciaenops ocellatus (red drum)</td>
<td>Milstein et al. (2000)</td>
</tr>
<tr>
<td>O. mossambicus (Mozambique tilapia)</td>
<td>Megalops cyprinoides (tarpon)</td>
<td>Fortes (1985)</td>
</tr>
</tbody>
</table>

(Continued)
Swingle (1950) measured the efficiency of a predator as A_T, the percentage of the population harvested biomass formed by fish that attained commercial size, $A_T = 100\%$, indicating complete recruitment control and all harvested fish of commercial size. Table 1.2 presents A_T results obtained by different authors for tilapia grown with and without predators under a range of culture conditions. It can be observed that in all cases the presence of predators led to a higher proportion of marketable tilapia and higher harvesting weight and yield of the stocked tilapia than in the control ponds without predators. The increased A_T demonstrates that tilapia recruitment was controlled by the predator, while the increased final weight and yield of the stocked tilapia point to better results in the presence of a predator.

Concluding Remarks

Tilapia co-culture with fish or crustaceans has production and environmental advantages in relation to monoculture. Knowledge of the ecology of the production system and the nature of the relationships between tilapia and the other fish or crustacean species constitutes...
Table 1.2 Studies on Nile tilapia recruitment control by predator fishes.

<table>
<thead>
<tr>
<th>References</th>
<th>Predator</th>
<th>Stocking</th>
<th>Culture duration (days)</th>
<th>Harvesting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tilapia</td>
<td></td>
<td>With predator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stocked tilapia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (ha)</td>
<td>Weight (g)</td>
<td>Weight (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predator Density (g)</td>
<td>Predator Weight (g)</td>
<td>Predator Weight (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratio til:pred (x:1)</td>
<td></td>
<td>Yield (kg/ha)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A_T (%)</td>
</tr>
<tr>
<td>Bedawi (1985)</td>
<td>Lates niloticus</td>
<td>10,000</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagbenro (2000)</td>
<td>Clarias gariepinus × Heterobranchus longifilis</td>
<td>20,000</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagbenro (2000)</td>
<td>Clarias gariepinus × Heterobranchus bidorsalis</td>
<td>20,000</td>
<td>44</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Population</td>
<td>Mean Size</td>
<td>Age 1</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Shrestha et al. (2011)</td>
<td>Tor putitora</td>
<td>20,000</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>328</td>
<td>352</td>
</tr>
<tr>
<td>Milstein et al. (2000)</td>
<td>Morone saxatilis × M. chrysops</td>
<td>15,000</td>
<td>65</td>
<td>135</td>
</tr>
<tr>
<td>Milstein et al. (2000)</td>
<td>Sciaenops ocellatus</td>
<td>15,000</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Milstein et al. (2000)</td>
<td>Sciaenops ocellatus</td>
<td>15,000</td>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>30</td>
</tr>
</tbody>
</table>

a Mixed sex tilapia, tilapia, and predator stocked at 7.5 cm length.

b 90% Male tilapia.

c Tilapia was the hybrid *O. niloticus × O. aureus*.

d 95% Male tilapia.
an important tool for the proper management of such co-cultures.

References

