Groundwater Hydrology
Conceptual and Computational Models

K.R. Rushton
Emeritus Professor of Civil Engineering
University of Birmingham, UK
Groundwater Hydrology
Groundwater Hydrology
Conceptual and Computational Models

K.R. Rushton
Emeritus Professor of Civil Engineering
University of Birmingham, UK
Contents

Preface xiii

1 Introduction 1
 1.1 Groundwater Investigations – a Detective Story 1
 1.2 Conceptual Models 2
 1.3 Computational Models 2
 1.4 Case Studies 3
 1.5 The Contents of this Book 3
 1.6 Units, Notation, Journals 5

Part I: Basic Principles 7

2 Background to Groundwater Flow 9
 2.1 Introduction 9
 2.2 Basic Principles of Groundwater Flow 9
 2.2.1 Groundwater head 10
 2.2.2 Direction of flow of groundwater 10
 2.2.3 Darcy's Law, hydraulic conductivity and permeability 11
 2.2.4 Definition of storage coefficients 13
 2.2.5 Differential equation describing three-dimensional time-variant groundwater flow 14
 2.3 One-dimensional Cartesian Flow 14
 2.3.1 Equation for one-dimensional flow 15
 2.3.2 Aquifer with constant saturated depth and uniform recharge 16
 2.3.3 Definition of transmissivity 17
 2.3.4 Aquifer with constant saturated depth and linear variation in recharge 18
 2.3.5 Aquifer with constant saturated depth and linear decrease in recharge towards lake 19
 2.3.6 Confined aquifer with varying thickness 20
 2.3.7 Unconfined aquifer with saturated depth a function of the unknown groundwater head 20
 2.3.8 Time-variant one-dimensional flow 22
 2.4 Radial Flow 23
 2.4.1 Radial flow in a confined aquifer 23
 2.4.2 Radial flow in an unconfined aquifer with recharge 24
 2.4.3 Radial flow in an unconfined aquifer with varying saturated depth 26
 2.4.4 Radial flow in a leaky aquifer 27
 2.4.5 Time-variant radial flow 28
 2.4.6 Time-variant radial flow including vertical components 28
 2.5 Two-dimensional Vertical Section (Profile Model) 28
 2.5.1 Steady-state conditions, rectangular dam 28
 2.5.2 Time-variant moving water table 31
 2.6 Regional Groundwater Flow 32
 2.6.1 Analysis of Connorton (1985) 32
6.6.3 Case study of a Miliolite limestone aquifer

6.7 Concluding Remarks

7 Radial Flow where Vertical Components of Flow are Significant

7.1 Introduction

7.2 Radial-Vertical Time-variant Flow \([r, z, t]\)

7.2.1 Mathematical formulation

7.2.2 Analytical solutions

7.2.3 Numerical methods

7.2.4 Examples of numerical solutions in \([r, z, t]\)

7.3 Radial-Vertical Time-instant \([r, z]\)

7.3.1 Principles of the approach

7.3.2 Case study: reduction of discharge due to partial penetration of borehole

7.3.3 Case study: effectiveness of water table control using tubewells

7.4 Two-zone Approximation \([r, t, v_z]\)

7.4.1 Introduction

7.4.2 Examples of formulation using the two-zone model

7.4.3 Details of the two-zone model

7.4.4 Discrete space–discrete time equations for the two-zone model

7.4.5 Solution of simultaneous equations

7.4.6 Examples of the use of the two-zone model

7.5 Inclusion of Storage in Aquitards \([r, t, z, t]\)

7.5.1 Introduction

7.5.2 Analytical solutions

7.5.3 Case study: influence of aquitard storage on an aquifer system; increase and subsequent decrease in flows from the aquitard

7.5.4 Influence on aquitard storage of pumping from sandstone aquifers

7.6 Concluding Remarks

8 Practical Issues of Interpreting and Assessing Resources

8.1 Introduction

8.2 Step Drawdown Tests and Well Losses

8.2.1 Introduction

8.2.2 Confined, leaky or unconfined conditions

8.2.3 Estimating the coefficients \(B\) and \(C\)

8.2.4 Exploring well losses

8.2.5 Causes of well loss

8.2.6 Field examples of well losses

8.3 Packer Testing to Identify variations in Hydraulic Conductivity with Depth

8.3.1 Conducting packer tests

8.3.2 Interpretation of packer tests using analytical expressions

8.3.3 Do the analytical solutions provide a reasonable approximation to hydraulic conductivity variations?

8.3.4 Effectiveness of fissures in collecting water from the aquifer

8.3.5 Comparison of properties of sandstone aquifers based on cores, packer testing and pumping tests

8.3.6 Slug tests

8.4 Information about Groundwater Heads in the Vicinity of Production Boreholes

8.4.1 Background

8.4.2 Case Study: identifying the water table elevation

8.5 Realistic Yield from Aquifer Systems

8.5.1 Introduction
8.5.2 Weathered-fractured aquifers 246
8.5.3 Alluvial aquifers with an uppermost layer of low hydraulic conductivity 247
8.5.4 Response of an alluvium-sandstone aquifer system 252

8.6 Injection Wells and Well Clogging 254
8.6.1 Introduction 254
8.6.2 Alluvial aquifer in India 254
8.6.3 Initial pumping test 256
8.6.4 Artificial recharge results and interpretation 257
8.6.5 North London Artificial Recharge Scheme 258

8.7 Variable Hydraulic Conductivity with Depth in Chalk and Limestone 259
8.7.1 Introduction 259
8.7.2 Case study in Berkshire Downs, the UK 259
8.7.3 Consequences of variation in hydraulic conductivity 261

8.8 Horizontal Wells 262
8.8.1 Collector wells 262
8.8.2 Mathematical expressions for horizontal wells 263
8.8.3 Horizontal well in a shallow coastal aquifer 264

8.9 Concluding Remarks 267

Part III: Regional Groundwater Flow 269

9 Regional Groundwater Studies in which Transmissivity is Effectively Constant 271
9.1 Introduction 271
9.2 Nottinghamshire Sherwood Sandstone Aquifer 271
9.2.1 Identifying the conceptual model, focus on recharge components 271
9.2.2 Idealisations introduced in the regional groundwater model 274
9.2.3 Quantifying the parameters of the conceptual model 274
9.2.4 Numerical groundwater model 276
9.2.5 Adequacy of model 276
9.2.6 Flow balances 278

9.3 Northern Extension of Nottinghamshire Sherwood Sandstone Aquifer 279
9.3.1 Brief description of groundwater catchment 280
9.3.2 Conceptual models 281
9.3.3 Numerical groundwater model and flow balances 282

9.4 Lower Mersey Sandstone Aquifer 284
9.4.1 Conceptual model 284
9.4.2 Recharge through drift 286
9.4.3 Saline water 287
9.4.4 Numerical groundwater model 289
9.4.5 Flow balances and predictions 291

9.5 Barind Aquifer in Bangladesh 292
9.5.1 Background 293
9.5.2 Development of conceptual models 293
9.5.3 Can this rate of abstraction be maintained? 296
9.5.4 Possible provision of a regional groundwater model 297

9.6 Concluding Remarks 298

10 Regional Groundwater Flow in Multi-Aquifer Systems 299
10.1 Introduction 299
10.2 Mehsana Alluvial Aquifer, India 299
10.2.2 Description of the aquifer system 301
10.2.3 Field records of groundwater head 301
10.2.4 Flow processes in aquifer system 304
10.2.5 Mathematical model of a vertical section 305
10.2.6 Origin of flows as determined from vertical section model 307
10.2.7 More detailed study of smaller area 308
10.2.8 Concluding discussion 310
10.3 Vanathavillu Aquifer System, Sri Lanka 311
10.3.1 Introduction 311
10.3.2 Aquifer parameters 312
10.3.3 Groundwater head variations and estimates of aquifer resources 313
10.4 San Luis Potosi Aquifer System, Mexico 315
10.4.1 Shallow aquifer system 316
10.4.2 Deeper aquifer system 316
10.4.3 Input of deep thermal water: 318
10.4.4 Further considerations 319
10.5 Bromsgrove Sandstone Aquifer, UK 319
10.5.1 Summary of field information 320
10.5.2 Conceptual model 322
10.5.3 Mathematical model 322
10.5.4 Presentation of model outputs 323
10.5.5 Management issues 325
10.6 Further examples where vertical components of flow are significant 326
10.6.1 Madras aquifer 326
10.6.2 Waterlogging in Riyadh, Saudi Arabia 327
10.6.3 SCARPS: Saline Control and Reclamation Projects in Pakistan 328
10.6.4 Fylde aquifer, UK 329
10.7 Concluding Remarks 331

11 Regional Groundwater Flow with Hydraulic Conductivity Varying with Saturated Thickness 332
11.1 Introduction 332
11.2 Chalk Aquifer of the Berkshire Downs 333
11.2.1 Changing estimates of yields of the Lambourn Valley catchment 334
11.2.2 Conceptual and mathematical modelling 335
11.3 Southern Lincolnshire Limestone 337
11.3.1 General description of Southern Lincolnshire Limestone catchment 337
11.3.2 Recharge including runoff-recharge 338
11.3.3 Surface water–groundwater interaction 341
11.3.4 Wild boreholes 343
11.3.5 Variable hydraulic conductivity with depth 343
11.3.6 Résumé of conceptual models 345
11.3.7 Brief description of the total catchment models 346
11.3.8 Selected results and insights from the numerical model 347
11.4 Miliolite Limestone Aquifer in Western India 350
11.5 Gipping Chalk Catchment, Eastern England 351
11.5.1 Conceptual model 351
11.5.2 Quantified conceptual model 353
11.6 Further Examples 354
11.6.1 South Humberside Chalk 354
11.6.2 Candover Augmentation Scheme 354
11.6.3 Hesbaye aquifer, Belgium 357
11.7 Concluding Remarks 358
12 Numerical Modelling Insights

12.1 Introduction

12.2 Representation of Rivers
 12.2.1 Intermittent rivers
 12.2.2 Rivers with significant seasonal changes in stage and wetted perimeter

12.3 Representing Boreholes Pumping Water from Multi-layered Aquifers

12.4 Time-Instant Conditions
 12.4.1 Introduction
 12.4.2 Basis of *time-instant* approach
 12.4.3 Examples of sandstone and limestone aquifers
 12.4.4 Time-instant solutions

12.5 Initial Conditions
 12.5.1 Specified heads or specified flows
 12.5.2 Initial conditions for Sandstone and other high storage aquifers
 12.5.3 Initial conditions for aquifers with seasonal changes in transmissivity

12.6 Dimensions and Detail of Numerical Models
 12.6.1 Identification of the area to be represented by a numerical model
 12.6.2 Identification of the duration of a numerical model simulation
 12.6.3 External boundary conditions
 12.6.4 Estimating parameter values for a numerical model
 12.6.5 Refinement of numerical groundwater models
 12.6.6 Sensitivity analysis
 12.6.7 Preparing exploratory groundwater models with limited field information

12.7 Predictive Simulations
 12.7.1 Issues to be considered
 12.7.2 Representative example

12.8 Evaluation of Conceptual and Computational Models
 12.8.1 Approach to groundwater modelling
 12.8.2 Monitoring
 12.8.3 Recharge
 12.8.4 Model calibration and refinement
 12.8.5 Sustainability, legislation and social implications
 12.8.6 Climate change
 12.8.7 Substantive issues requiring further investigation

Appendix: Computer Program for Two-zone Model

List of Symbols

References

Index
It was more than twenty years ago when visiting India that I was asked the question, ‘How should a groundwater investigation be planned?’ At that time I had difficulty in giving a convincing answer, but in the intervening years, with involvement in many challenging practical groundwater studies, the important issues have become clearer. The key is understanding before analysis; this is reflected by the use of the words conceptual and computational models in the title of this book.

The number of groundwater investigations throughout the world continues to increase. The objectives of these investigations are varied, including meeting regulatory requirements, exploring the consequences of groundwater development and rectifying the results of over-exploitation of groundwater resources. Although hydrogeologists and water resource engineers working on these projects may not carry out the analytical and numerical analysis themselves, it is vital that they understand how to develop comprehensive quantified conceptual models and also appreciate the basis of analytical solutions or numerical methods of modelling groundwater flow. The presentation of the results of groundwater investigations in a form that can be understood by decision makers is another important task. This book is designed to address these issues. The first task in every investigation is to develop conceptual models to explain how water enters, passes through and leaves the aquifer system. These conceptual models are based on the interpretation of field data and other information. Second, techniques and methodologies are required to analyse the variety of flow processes identified during the conceptual model development. A considerable number of computational models are available.

Developments of both conceptual and computational models for groundwater hydrology have continued from early in the twentieth century to the present day. Initially, computational models relied on analytical methods but there is now a greater use of numerical models. Computational models for analysing groundwater problems are the subject of many articles in the literature. However, conceptual models are not discussed as widely. Real groundwater problems are frequently so complex that they can only be analysed when simplifying assumptions are introduced. Imagination and experience are required to identify the key processes which must be included in conceptual and computational models. Furthermore, the selection of appropriate aquifer parameters is not straightforward. A computational model does not need to be complex, despite the availability of model codes which include both saturated and unsaturated flow conditions with the option of a large number of three-dimensional mesh subdivisions and numerous time steps. Simpler, more flexible analytical or numerical models are often suitable for the early stages of modelling; more complex models can be introduced when there is confidence that the important features of the aquifer system have been recognised. In an attempt to indicate how the key processes are identified and aquifer parameters are selected, more than fifty major case studies are included in this book.

Case studies illustrate how crucial insights are gained which lead to a breakthrough in identifying the important flow processes which must be incorporated in the conceptual models. Comparing and contrasting an aquifer system with other field problems has proved to be of immense benefit. A further advantage of case studies is that they can indicate appropriate aquifer parameter values. For example, selecting suitable values for the effective vertical hydraulic conductivities of low permeability strata is notoriously difficult. However, experience gained from other investigations in similar situations often provides suitable first estimates. Due to differences in climate, geology and the way in which groundwater is utilised, the reader may find it difficult to appreciate the significance of some of the case studies. Yet much can be learnt from groundwater studies in other countries. Although the reader may never be involved in studying losses from lined canals or irrigated ricefields, insights gained from these investigations can be transferred to other projects involving