METALLOTHERAPEUTIC DRUGS AND METAL-BASED DIAGNOSTIC AGENTS
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>xxvi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxxvii</td>
</tr>
<tr>
<td>1 3Li Lithium Metallotherapeutics</td>
<td>1</td>
</tr>
<tr>
<td>Robin S.B. Williams and Adrian J. Harwood</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Inorganic Chemistry of Lithium</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Biology of Lithium</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 The history of lithium therapeutics</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2 Lithium and the body</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Targets of Lithium</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 Glycogen synthase kinase-3</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2 Inositol phosphate signalling</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Lithium Therapeutics</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1 Bipolar disorder and schizophrenia</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2 Alzheimer’s disease</td>
<td>12</td>
</tr>
<tr>
<td>1.5.3 Ischemia (stroke)</td>
<td>14</td>
</tr>
<tr>
<td>1.5.4 Adverse effects</td>
<td>14</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
5B. Boron Compounds as Therapeutic Drugs

Geeta Rana, Kamesh Vyakaranam, John A. Maguire and Narayan S. Hosmane

2.1 Boron Neutron Capture Therapy

2.2 Classes of Boron Compounds for Potential Use in BNCT

2.2.1 DNA binders

2.2.2 Boron-containing amino acids and related peptides

2.2.3 Boron-containing nucleic acid precursors

2.3 Phosphates, Phosphonates and Phosphoramidates

2.4 Amines

2.5 Boron Analogues of Pyrophosphates

2.6 Boronated Polyamines

2.7 Carbohydrates

2.8 Lipoproteins

2.9 Lipids and Phospholipids

2.10 Radiation Sensitizers

2.11 Cyclic Thiourea Derivatives

2.12 Central Nervous System (CNS) Depressants: Promazines, Hydantoins and Barbiturates

2.13 Hydantoins and Barbiturates

2.14 Oligonucleotide Antisense Agents

2.15 Hormones

2.16 Liposomes
3 12Mg The Role of Magnesium as a Metallotherapeutic Drug
Pietro Delva

3.1 Introduction

3.2 Magnesium as a Drug
3.2.1 Gestational hypertension, preeclampsia and eclampsia
3.2.2 Asthma
3.2.3 Stroke
3.2.4 Acute myocardial infarction
3.2.5 Arrhythmias
3.2.6 Miscellaneous

References

4 13Al Aluminum Metallotherapeutics
Thanos Salifoglou

4.1 Introduction

4.2 Adjuvants
4.2.1 Alum
4.2.2 Al(OH)₃
4.2.3 Aluminum hydroxide

4.3 Antacids
4.3.1 Aluminum hydroxide
4.3.2 Aluminum glycinate
4.3.3 Peptic ulcer disease
4.3.4 Bismuth aluminum carbonate
4.3.5 Bismuth–magnesium–sodium alumino-silicate

4.4 Phosphate Binders
4.4.1 Basic aluminum carbonate
4.4.2 Alumino-silicates
4.5 Alginate Raft Formulations
4.6 Blistering Diseases in the Elderly
4.7 Metabolic Diseases and Aluminum
4.8 Anti-malarial Substances
4.9 Potential Aluminum Toxicity
4.10 Conclusions

References

5 14Si Biological Activity of Organosilicon Compounds
Edmunds Lukevics and Luba Ignatovich

5.1 Introduction
5.2 Organosilicon Modification
5.2.1 O-, S- and N-Silylation
5.2.2 C-Silylation
5.3 Sila Analogues
5.4 Specific Organosilicon Compounds

References

6 20Ca The Role of Calcium as a Metallotherapeutic Drug
Mario Barbagallo and Ligia J. Dominguez

6.1 Introduction
6.2 Calcium Homeostasis
6.3 Hormonal Regulation of Calcium Metabolism
6.4 Optimal Amount of Dietary Calcium Intake and Benefits of Calcium Supplementation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Osteoporosis</td>
<td>115</td>
</tr>
<tr>
<td>6.6</td>
<td>Hypertension</td>
<td>116</td>
</tr>
<tr>
<td>6.7</td>
<td>Hypertension in Pregnancy and Preeclampsia</td>
<td>118</td>
</tr>
<tr>
<td>6.8</td>
<td>Colon Cancer</td>
<td>119</td>
</tr>
<tr>
<td>6.9</td>
<td>Weight Control and Regulation of Body Fat</td>
<td>119</td>
</tr>
<tr>
<td>6.10</td>
<td>Periodontal Disease</td>
<td>120</td>
</tr>
<tr>
<td>6.11</td>
<td>Kidney Stones</td>
<td>121</td>
</tr>
<tr>
<td>6.12</td>
<td>Calcium Supplements: Side Effects</td>
<td>121</td>
</tr>
<tr>
<td>6.13</td>
<td>Conclusions</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>22Ti Anti-tumor Titanium Drugs</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Erich Dubler</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>The Biochemistry of Titanium</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Titanium Anti-cancer Drugs</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Budotitane</td>
<td>130</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Chemistry and anti-cancer activity</td>
<td>130</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Isomer abundance of budotitane</td>
<td>131</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Reaction with biomolecules</td>
<td>133</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Animal studies</td>
<td>134</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Clinical investigations</td>
<td>134</td>
</tr>
<tr>
<td>7.5</td>
<td>Titanocene Dichloride</td>
<td>135</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Chemistry and anti-cancer activity</td>
<td>135</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Reaction with biomolecules</td>
<td>136</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Animal studies</td>
<td>137</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Clinical investigations</td>
<td>138</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Perspectives of titanocene dichloride</td>
<td>138</td>
</tr>
</tbody>
</table>
8 23V Insulin-Mimetic Vanadium-Containing Compounds
Tamás Kiss and Tamás Jakusch

8.1 Chemistry of Vanadium
8.2 Biological and Medicinal Aspects of Vanadium
8.3 The Role of Insulin in Glucose Metabolism
8.4 Vanadium Complexes with Biological Activity
8.5 Biological Activity and Toxicity of Various Vanadium(IV/V) Compounds
8.6 Speciation of VI(IV) Complexes in Biological Fluids
8.7 Possible Mechanism for in vivo Vanadium Action
8.8 Conclusion

Acknowledgements
References

9 25Mn Manganese Metallotherapeutics
Jeanne H. Freeland-Graves, Tanushree Bose and Abbass Karbassian

9.1 Prevalence in the Environment
9.2 Diet and Water
9.3 Functions
9.4 MnSOD 160
9.5 Deficiency 161
9.5.1 Animals 161
9.5.2 Humans 162
9.6 Toxicity 162
9.7 Therapeutic Manganese-Related Agents 163
9.8 Therapeutic Uses 165
9.8.1 Arthritis 165
9.8.2 Cancer 166
9.8.3 Cardiovascular diseases 167
9.8.4 Dermatitis 168
9.8.5 Diabetes 168
9.8.6 Epilepsy 169
9.8.7 Human immunodeficiency virus 169
9.8.8 Inflammatory pain and response 170
9.8.9 Ischemia and reperfusion injury 171
9.8.10 Osteoporosis 171
9.8.11 Peritoneal adhesions 172
9.8.12 Premenstrual syndrome 172
9.8.13 Shortened life span (premature aging) 173
9.8.14 Other disorders 174
9.9 Magnetic Resonance Imaging (MRI) 174
9.10 Future Implications 175
Acknowledgements 175
References 176

10 26Fe The Use of Iron-Based Drugs in Medicine 179
Xiang Wu and Mei Lin Go
10.1 Introduction 179
10.2 Ferrocene 180
10.3 TMH Ferrocene

10.4 Ferrocene in Drug Design
 10.4.1 Examples where introduction of ferrocene has resulted in a loss or no change in activity
 10.4.2 Examples where introduction of ferrocene has resulted in enhanced activity or a change in activity profile

10.5 Ferrochloroquine

10.6 Other Ferrocenyl Anti-plasmodial Agents

10.7 Organioiron as Anti-cancer Agents

10.8 Conclusions

References

11 27Co Cobalt Complexes as Potential Pharmaceutical Agents

Hui Chao and Liang-Nian Ji

11.1 Introduction

11.2 Enzyme Inhibition/Induction
 11.2.1 Serine protease inhibitors
 11.2.2 Topoisomerase II inhibitors
 11.2.3 Heme oxygenase-1 inducers

11.3 Nucleic Acid Binding and Cleavage
 11.3.1 Cobalt(III) polypyridyl complexes
 11.3.2 Cobalt(III) bleomycin complexes
 11.3.3 Cobalt(III) polyamine complexes

11.4 Miscellaneous
 11.4.1 Cobalamin conjugates as drug delivery devices
 11.4.2 Hypoxic selective agents
 11.4.3 PET imaging agents

11.5 Conclusions
12 Cu Chemotherapeutic Copper Compounds
Francisco González-Vilchez and Rosario Vilaplana

12.1 Introduction 219
12.2 Copper-Purine Derivatives Complexes 220
12.3 Copper-Thiosemicarbazone Complexes 223
12.4 Copper-Benzohydroxamic Acid Complexes 230
12.5 Copper-Imidazole Derivatives Complexes 230
12.6 Copper-Polycarboxylate Complexes 233

Acknowledgements 234
References 235

13 Zn The Role of Zinc as a Metallotherapeutic Agent
Jane V. Higdon and Emily Ho

13.1 Introduction 237
13.2 Functions 237
13.2.1 Catalytic functions 238
13.2.2 Structural functions 238
13.2.3 Regulatory functions 238

13.3 Zinc Deficiency 238
13.3.1 Severe zinc deficiency 239
13.3.2 Mild zinc deficiency 239
13.3.3 Growth retardation 239