NOVEL AND RE-EMERGING RESPIRATORY VIRAL DISEASES
NOVEL AND RE-EMERGING RESPIRATORY VIRAL DISEASES
The Novartis Foundation is an international scientific and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientific research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation’s headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines.

Towards the end of 2006, the Novartis Company undertook a review of the Foundation as a consequence of which the Foundation’s Trustees were informed that Company support for the Foundation would cease with effect from the end of February 2008.

The Foundation’s Trustees have considered various options for the future, the favoured of which is a merger with another, cognate, organization whereupon the Foundation will then formally be dissolved. Any future activities at 41 Portland Place will then be determined by the new organization.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk

The Institute of Molecular and Cell Biology (IMCB) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1987, the research institute’s mission is to foster a vibrant research culture for biomedical sciences and high quality manpower training to facilitate development of the biotechnology and pharmaceutical industries in Singapore.

Funded primarily by Biomedical Research Council (BMRC) of A*STAR, IMCB has about 35 core research labs and 8 core facility units consisting of over 400 research scientists. IMCB’s research activities focus on five major fields: Cell Biology, Developmental Biology, Structural Biology, Infectious Diseases and Cancer Biology. IMCB continues to publish in renowned international journals, with more than a 1000 publications since 1987.

IMCB is currently based at The Biopolis @ One North. It is envisioned to be the biggest Biomedical Sciences R&D hub in Asia. IMCB continues to strive for excellence in biomedical R&D and the vision of Singapore as a world class hub for the Biomedical Sciences in Asia and beyond.
NOVEL AND RE-EMERGING RESPIRATORY VIRAL DISEASES
Contents

Symposium on Novel and re-emerging respiratory viral diseases, held at the Institute of Molecular and Cell Biology, Singapore, 23–25 April 2007

Editors: Gregory Bock (Organizer) and Jamie Goode

This meeting was based on a proposal made by Yee-Joo Tan and Wanjin Hong

Robert G. Webster Chair’s introduction 1

Larry J. Anderson and Suxiang Tong Identification and characterization of novel viruses 4
 Discussion 12

Edward C. Holmes The evolution of viral emergence 17
 Discussion 26

Derek J. Smith, Jan C. de Jong, Alan S. Lapedes, Terry C. Jones, Colin A. Russell, Theo M. Bestebroer, Guus F. Rimmelzwaan, Albert D. M. E. Osterhaus and Ron A. M. Fouchier Antigenic cartography of human and swine influenza A (H3N2) viruses 32
 Discussion 37

Gabriele Neumann and Yoshihiro Kawaoka Influenza pandemics and control 45
 Discussion 53

J. J. Skehel, S. Wharton, L. Calder and D. Stevens On the activation of membrane fusion by influenza haemagglutinin 56
 Discussion 62

Yee Sin Leo Singapore SARS experience and preparation for future outbreak 69
 Discussion 74
Yee-Joo Tan SARS lessons for a young virology laboratory in Singapore 79
Discussion 85

Ih-Jen Su How the SARS experience has helped preparations for future outbreaks: the Taiwan experience, with emphasis on the successful control of institutional outbreak of influenza in 2003/2004 using a stockpile of antivirals 89
Discussion 95

General discussion I 99

Yuelong Shu, Yu Lan, Leying Wen, Ye Zhang, Jie Dong, Xinseng Zhao, Dayan Wang, Lihong Yao, Xiyan Li, Wei Wang, Xiuping Wang, Qi Wang, Shumin Duan, Jingjing Huang, Lei Yang, Hongjie Yu, Yuanji Guo, Weizhong Yang, Xiyan Xu, Nancy J. Cox, Xiaoping Dong, Yu Wang and Dexin Li Genetic and antigenic characterization of avian influenza A (H5N1) viruses isolated from humans in Mainland China 103
Discussion 108

J. S. M. Peiris and Y. Guan Emerging infectious diseases and the animal–human interface 113
Discussion 122

Erich Hoffmann, Hui-Ling Yen, Rachelle Salomon, Neziha Yilmaz and Robert G. Webster Transmission and pathogenicity of H5N1 influenza viruses 128
Discussion 137

John M. Wood Development of vaccine for a future influenza pandemic 141
Discussion 146

Final discussion 152

Index of contributors 157

Subject index 159
Participants

Larry J. Anderson Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA

Neal Greig Copeland Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Martin Crusat The Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam

Erich Hoffmann Department of Infectious Diseases, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA

Edward C. Holmes Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA

Wanjin Hong Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Nancy Jenkins Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Jeffrey S. Kahn Division of Infectious Diseases, Department of Pediatrics, Yale University School of Medicine, PO Box 208064, New Haven, CT 06520, USA

Yoshihiro Kawaoka Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA and International Research Center for Infectious Diseases and Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Michael M. Lai Office of the Vice President, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
Sunil K. Lal Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg New Delhi 110067, India

David Lane Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Yee Sin Leo Communicable Disease Centre, Tan Tock Seng Hospital, Moulmein Road, Singapore 308433

Ai Ee Ling Virology Laboratory, Department of Pathology, Singapore General Hospital, Outram Road, Singapore 168608

Ding Xiang Liu Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Albert Osterhaus Department of Virology, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, 3000 DR Rotterdam, The Netherlands

J. S. Malik Peiris Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pokfulam, Hong Kong SAR

Shuo Shen Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

John J. Skehel MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

Derek J. Smith Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Ih-Jen Su Division of Clinical Research, National Health Research Institutes, 138, Shen-Li Rd, Tainan, Taiwan

Paul Ananth Tambyah Division of Infectious Diseases, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074

Yee-Joo Tan Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Tran Tan Thanh The Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam
Jean-Paul Thiery Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Subhash Vasudevan Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos #05-01, Singapore 138670

Robert G. Webster (Chair) Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA

John M. Wood National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK

Li Xin Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
Emerging and re-emerging infectious diseases are part of the natural history of humankind, for there has always been a struggle between microbes and humans. A considerable part of the human genome is concerned directly or indirectly with strategies to combat infectious diseases. Humans have continued their global dominance and in the past century have used scientific knowledge to reduce the impact of novel disease agents. The ever-increasing human population expansion and factors such as land use, water use and energy use needed to support the burgeoning human population, has resulted in production of animals on megafarms in close proximity to wild animals and birds. The export of intensive farming practices to the developing world, for example chicken and pig raising, has not always been accompanied by the best practices for ensuring bio-security and disease prevention in those operations. Thus intensive poultry and pig raising, without adequate separation from free-flying birds and water treatment, is a recipe for disaster. The increasing number of outbreaks of lethal H5 and H7 influenza, in domestic poultry, globally attests to these assertions.

The emergence of novel infectious diseases is a continuing process with multiple novel agents emerging in the past decade. While many of these agents caused transitory disease outbreaks—Nepah virus from bats to pigs and people in Malaysia, and Hendra virus from bats to horses and people in Australia—that were rapidly identified and stamped out, others became endemic in humans and in domestic animal species. Notable examples are human immunodeficiency virus (HIV) (African primates to humans) and West Nile virus (introduction to the Americas from Europe and spread through mosquitoes to wild birds, domestic mammals and humans).

Two recent examples of emerging infectious disease agents are severe acute respiratory syndrome (SARS) and highly pathogenic H5N1 avian influenza (‘bird flu’). These two disease agents are the main topics for this meeting. Both of these diseases are caused by RNA viruses of zoonotic origin; SARS by a novel coronavirus from bats via civet cats in live animal markets (‘wet markets’) to humans, and H5N1 bird flu by a type A orthomyxovirus from wild aquatic birds via
domestic poultry to humans. Both of these emerging infectious diseases were ‘man made’ in the sense that increased affluence of humans in the region increased the demand for protein in the diet. Intensified animal raising and the demand for exotic wild animal meat permitted these viruses to initially spread to humans in Hong Kong and Southern China through wet markets. The actual precursor viruses of neither SARS nor H5N1 bird influenza have been identified, but their closest genetic relatives were detected in animals and poultry in wet markets at the time they initially spread to humans.

Southeast Asia has been described as the epicentre for the emergence of pandemic influenza viruses, including the Asian H2N2 influenza of 1957, the Hong Kong H3N2 virus of 1968, as well as the re-emerging H1N1 Russian influenza virus of 1977. Both the H5N1 highly pathogenic avian influenza virus and the SARS coronavirus emerged in this region of the world. While culling of all domestic poultry in Hong Kong in 1997 successfully stamped out the initial genotype of H5N1, the virus re-emerged from apparently healthy ducks and geese in the region and spread to multiple countries in Southeast Asia including Vietnam, Cambodia, Laos, Indonesia, Japan and South Korea. The virus was largely restricted to the Southeast Asia region until 2005. The dramatic spread of the virus in mid-2005 occurred after H5N1 infected Bar-headed geese and other wild water fowl in Qinghai Lake in Western China. After that event, the virus spread rapidly through the Indian subcontinent, the African continent and Europe. The role of migratory birds seems probable. While the highly pathogenic H5N1 virus continues to spread throughout Eurasia it has, to date, not spread to the Americas despite the overlap of migrating birds in Alaska.

Both SARS and H5N1 bird flu are similar in being poorly transmissible in humans. During the SARS outbreak, this virus infected 8096 persons globally with 774 deaths (9.6%), while H5N1 bird flu has infected over 300 humans with 60% lethality. The poor transmissibility of SARS led to the control of this virus by conventional biosecurity and quarantine. While SARS is under control, H5N1 bird flu is not. H5N1 appeared in Hong Kong a decade ago: it has now spread to over 60 countries in Eurasia and has evolved into at least four antigenically distinct clades. Although H5N1 has not acquired consistent human-to-human transmission the possibility exists that we may be witnessing the evolution of a human influenza pandemic in real time.

Dr Yee-Joo Tan from The Institute of Molecular and Cell Biology, Proteos, Singapore, who participated in the battle against SARS in Singapore, proposed the topic of emerging and re-emerging respiratory viruses as the subject for the present meeting. Both the topic and the site for the meeting were most appropriate. Although the economic impact of SARS turned out to be relatively short term (due to rapid acquisition of scientific knowledge and control strategies) the initial impact on service exports in Singapore and Hong Kong, especially on tourism, was par-
particularly severe. If SARS had not been controlled so expediently, the economic impact would have been much worse.

The lessons from SARS are certainly applicable to the expanding problem of H5N1 bird flu and to future emerging infectious diseases. The successful containment of SARS and the lessons learned from that successful programme are important to be considered in the face of a possibly emerging influenza pandemic in humans. However, we must keep in mind that the transmissibility of influenza is likely to be very different from that of the SARS coronavirus.