Ventricular Arrhythmias and Sudden Cardiac Death
Ventricular Arrhythmias and Sudden Cardiac Death

EDITED BY

Paul J. Wang, MD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Amin Al-Ahmad, MD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Henry H. Hsia, MD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Paul C. Zei, MD, PhD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Blackwell
Futura
Contents

List of contributors, vii
Foreword, xi
Hein J. Wellens

Part 1 Mechanisms of VT
1 The role of spatial dispersion of repolarization and intramural reentry in inherited and acquired sudden cardiac death syndromes, 1
Charles Antzelevitch
2 Mechanisms of ventricular tachycardia: underlying pathological and physiological abnormalities, 18
Jacques MT de Bakker, Harold VM van Rijen

Part 2 Etiologies and syndromes
3 Time-dependent gender differences in the clinical course of patients with the congenital long-QT syndrome, 28
Ilan Goldenberg, Arthur J. Moss, Wojciech Zareba
4 Genetics of ventricular arrhythmias, 37
Zian H. Tseng, Jeffrey Olgin
5 Arrhythmogenic right ventricular dysplasia cardiomyopathy, 51
Rahul Jain, Hugh Calkins
6 Risk stratification and the implantable defibrillator for the prevention of sudden death in hypertrophic cardiomyopathy, 64
Barry J. Maron

Part 3 Catheter and surgical ablation
7 Mapping and ablation of ventricular tachycardia after myocardial infarction, 76
William G. Stevenson, Usha Tedrow
8 Mapping and ablation of ventricular tachycardia in nonischemic cardiomyopathy, 89
Henry H. Hsia, Pirooz S. Mofrad
9 Mapping to define scars and isthmuses: a new paradigm for guiding ventricular tachycardia ablation, 101
Kyoko Soejima
10 Ablation of idiopathic ventricular tachycardias, 112
Nitish Badhwar, Melvin M. Scheinman
11 Ablation of ventricular fibrillation, 128
Karen P. Phillips, J. David Burkhardt, Robert A. Schweikert, Walid I. Saliba, Andrea Natale
12 Ablation of ventricular tachycardia in congenital heart disease, 141
George F. Van Hare
13 Role of imaging techniques in catheter ablation of ventricular tachycardia, 150
Matthew D. Hutchinson, David J. Callans
14 Epicardial ablation of ventricular tachycardia, 164
Mauricio Scanavacca, Eduardo Sosa
15 Role of catheter control systems in ablation of ventricular tachycardia, 178
Marco Perez, Amin Al-Ahmad
Part 4 Epidemiology, risk stratification, and pharmacological therapy for ventricular tachycardia and sudden death

17 Epidemiology and etiologies of sudden cardiac death, 198
Keane K. Lee, Amin Al-Ahmad, Paul J. Wang, Robert J. Myerburg

18 Non-invasive tests for risk stratification in ischemic and non-ischemic cardiomyopathy, 213
J. Thomas Bigger, Mark C. Haigney, Robert E. Kleiger

19 Risk stratification: where we are and where do we go from here, 240
Jeffrey J. Goldberger

20 Pharmacological management of ventricular arrhythmias, 247
Kevin J. Makati, Munther Homoud, Mark S. Link, Jonathan Weinstock, N.A. Mark Estes III

Part 5 Ventricular fibrillation and defibrillation

21 The mechanisms of ventricular fibrillation, 267
Lan S. Chen, Peng-Sheng Chen, Moshe S. Swissa

22 Mechanisms of defibrillation, 277
Derek J. Dosdall, Jian Huang, Raymond E. Ideker

23 Automatic external defibrillation and public access defibrillator response, 289
Paul J. Wang, Amin Al-Ahmad, Robert J. Myerburg

24 Advances in cardiopulmonary resuscitation, 298
Anurag Gupta, Amin Al-Ahmad

25 Advances in implantable defibrillator therapy and technologies, 312
Paul J. Wang, Amin Al-Ahmad, Henry H. Hsia, Paul C. Zei

26 ICD lead extraction: when, why and how?, 327
Bruce L. Wilkoff, Oussama Wazni

Index, 335
Contributors

Amin Al-Ahmad, MD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Charles Antzelevitch, PhD
Masonic Medical Research Laboratory
Utica, NY
USA

Nitish Badhwar, MBBS, FACC
Section of Cardiac Electrophysiology
UCSF, Division of Cardiology
University of California
San Francisco, CA
USA

Marci S. Bailey, RN
Research Coordinator
Washington University School of Medicine
St. Louis, MO
USA

J. Thomas Bigger, MD
Columbia University College of Physicians and Surgeons
New York, NY
USA

J. David Burkhardt
Cardiac Pacing and Electrophysiology
Department of Cardiovascular Medicine
Cleveland Clinic Foundation
Cleveland, OH
USA

Hugh Calkins, MD
Professor of Medicine
Director of the Arrhythmia Service
Director of the Electrophysiology Laboratory
Director of the Johns Hopkins ARVD Program
Johns Hopkins Medical Institutions
Baltimore, MD
USA

David J. Callans, MD
University of Pennsylvania Health System
Philadelphia, PA
USA

Lan S. Chen, MD
The Department of Neurology
Indiana University School of Medicine
Indianapolis, Indiana
USA

Peng-Sheng Chen, MD
The Krannert Institute of Cardiology
Division of Cardiology
Department of Medicine
Indiana University School of Medicine
Indianapolis, IN
USA

Ralph J. Damiano, Jr. MD
Chief of Cardiothoracic Surgery
John Shoenberg Professor of Surgery
Washington University School of Medicine
St. Louis, MO
USA

Jacques MT de Bakker, PhD
Head, Department of Experimental Cardiology Academic Medical Center; Amsterdam, The Netherlands
The Center of Heart Failure Research, Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
The Heart Lung Center, University Medical Center Utrecht, The Netherlands
The Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
The Interuniversity Cardiology Institute of the Netherlands, Utrecht
The Netherlands

Derek J. Dosdall, PhD
University of Alabama at Birmingham
Department of Biomedical Engineering
Birmingham, AL
USA
List of contributors

N.A. Mark Estes III, MD
Professor of Medicine
Director, Cardiac Arrhythmia Center
Tufts University School of Medicine
Boston, MA
USA

Ilan Goldenberg, MD
The Cardiology Division
Department of Medicine
University of Rochester Medical Center
Rochester, NY
USA

Jeffrey J. Goldberger, MD
The Division of Cardiology
Department of Medicine
Feinberg School of Medicine
Northwestern University
Chicago, IL
USA

Anurag Gupta, MD
Stanford University Medical Center
Stanford, CA
USA

Mark C. Haigney, MD
Uniformed Services University
Bethesda, MD
USA

Munther Homoud, MD
Tufts-New England Medical Center
Boston, MA
USA

Henry H. Hsia, MD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA

Jian Huang, MD, PhD
University of Alabama at Birmingham
Departments of Medicine
Birmingham, AL
USA

Mathew D. Hutchinson, MD
University of Pennsylvania Health System
Philadelphia, PA
USA

Raymond E. Ideker, MD, PhD
University of Alabama at Birmingham
Departments of Physiology and Biomedical Engineering Medicine
Birmingham, AL
USA

Rahul Jain, MD
Division of Cardiology
The Johns Hopkins University School of Medicine
MD
USA

Robert E. Kleiger, MD
Washington University School of Medicine
St. Louis, MO
USA

Keane K. Lee, MD
Stanford University Medical Center
Stanford, CA
USA

Mark S. Link, MD
Tufts-New England Medical Center
Boston, MA
USA

Kevin J. Makati, MD
Tufts-New England Medical Center
Boston, MA
USA

Barry J. Maron, MD
Hypertrophic Cardiomyopathy Center
Minneapolis Heart Institute Foundation
MN
USA

Pirooz S. Mofrad, MD
Stanford University Medical Center
Standford, CA
USA

Robert J. Moraca, MD
Fellow in Cardiothoracic Surgery
Washington University School of Medicine
St. Louis, MO
USA
Arthur J. Moss, MD
Professor of Medicine (Cardiology)
Director, Heart Research Follow-Up Program
University of Rochester Medical Center
Rochester, NY
USA

Robert J. Myerburg, MD, FACC
Professor of Medicine and Physiology
Chief, Division of Cardiology
University of Miami
Miami, FL
USA

Andrea Natale, MD
Section Head, Electrophysiology and Pacing
Director of the Electrophysiology Laboratories
The Cleveland Clinic Foundation
Cleveland, OH
USA

Jeffrey Olgin, MD
Section of Cardiac Electrophysiology
Division of Cardiology
University of California, San Francisco
San Francisco, CA
USA

Marco Perez, MD
Stanford University
Stanford, CA
USA

Karen P. Phillips, MB, BS (Hons), FRACP
Clinical Cardiac Electrophysiology Fellow
Department of Cardiovascular Medicine
Cleveland Clinic Foundation
Cleveland, OH
USA

Walid I. Saliba, MD
Director, Electrophysiology Laboratories
Section of Cardiac Pacing and Electrophysiology
Department of Cardiovascular Medicine
Cleveland Clinic Foundation
Cleveland, OH
USA

Mauricio Scanavacca, MD
Heart Institute
University of Sao Paulo Medical School
Sao Paulo
Brasil

Melvin M. Scheinman, MD, FACC
Section of Cardiac Electrophysiology
University of California, San Francisco
San Francisco, CA
USA

Robert A. Schweikert, MD
Director, EP Clinical Operations
Section of Cardiac Electrophysiology and Pacing
Department of Cardiovascular Medicine
Cleveland Clinic Foundation
Cleveland, OH
USA

Kyoko Soejima, MD
Assistant Professor
Division of Cardiology
Keio University
Tokyo
Japan

Eduardo Sosa, MD
Heart Institute
University of Sao Paulo Medical School
Sao Paulo
Brazil

Moshe S, Swissa, MD
Division of Cardiology
Department of Medicine
Kaplan Medical Center, Rehovot
The Hebrew University, Jerusalem
Israel

William G. Stevenson, MD
Director, Clinical, Cardiac Electrophysiology, Program Cardiovascular Division
Brigham and Women’s Hospital
Boston, MA
USA

Usha Tedrow, MD
Associate Director, Clinical Cardiac, Electrophysiology, Program Cardiovascular Division
Brigham and Women’s Hospital
Boston, MA
USA

Zian H. Tseng, MD
Section of Cardiac Electrophysiology
Division of Cardiology
University of California, San Francisco
San Francisco, CA
USA
List of contributors

George F. Van Hare, MD
Professor of Pediatrics, Clinical Professor of Pediatrics; and Director, Pediatric Arrhythmia Center
Stanford University School of Medicine and UCSF
Palo Alto, CA
USA

Harold VM van Rijen
The Department of Medical Physiology
University Medical Center Utrecht
The Netherlands

Paul J. Wang, MD
Stanford University Medical Center
Stanford, CA
USA

Oussama Wazni, MD
Associate Director
Cleveland Clinic Center for Cardiovascular Research
Cleveland Clinic
Cleveland, OH
USA

Jonathan Weinstock, MD
Tufts-New England Medical Center
Boston, MA
USA

Bruce L. Wilkoff, MD
Professor of Medicine and Director, Cardiac Pacing and Tachyarrhythmia Devices
Cleveland Clinic Foundation
Cleveland, OH
USA

Wojciech Zareba, MD, PhD
The Cardiology Division, Department of Medicine
University of Rochester Medical Center
Rochester, NY
USA

Paul C. Zei, MD, PhD
Cardiac Arrhythmia Service
Stanford University Medical Center
Stanford, CA
USA
When, 40 years ago, intracardiac stimulation and activation studies were started for the analysis of cardiac arrhythmias, nobody could have predicted the advances that were going to be made in the years thereafter in our understanding and management of ventricular arrhythmias and sudden death.

Since then an enormous amount of information has become available, leading to our current understanding of mechanisms, etiology, epidemiology, risk stratification, and management of these, unfortunately too often occurring, life-threatening situations.

The best way to present that knowledge, and also the relation between those different areas, is to put it in the form of a book.

We live in a time when information spreads rapidly by way of the internet. However, tunnel vision is one of the dangers of that medium: the subspecialist, looking only for what is new in his or her specialized area, may lose sight of the complete picture with its inherent dangers.

Therefore one has to welcome this book for its coverage and time of publication. By selecting the contributors carefully, the editors have succeeded in bringing together, in one book, an excellent and complete overview of what the cardiologist should know for optimal management of the patient with a ventricular arrhythmia. Among the many in-depth presentations one will find how to select the candidate for catheter ablation, when to implant an ICD, and what measures have to be taken to reduce sudden death out of hospital.

Hein J. Wellens
Maastricht, The Netherlands
August 2007
CHAPTER 1

The role of spatial dispersion of repolarization and intramural reentry in inherited and acquired sudden cardiac death syndromes

Charles Antzelevitch

Abstract

The cellular basis for intramural reentry that develops secondary to the development of transmural dispersion of repolarization (TDR) is examined in this review. The hypothesis that amplification of spatial dispersion of repolarization underlies the development of intramural reentry and life-threatening ventricular arrhythmias associated with inherited ion channelopathies is probed. The roles of TDR in the long-QT, short-QT, and Brugada syndromes as well as catecholaminergic polymorphic ventricular tachycardia are critically examined. In the long-QT syndrome, amplification of TDR is generally secondary to preferential prolongation of the action potential duration (APD) of M cells, whereas in the Brugada syndrome, it is due to selective abbreviation of the APD of right ventricular epicardium. Preferential abbreviation of APD of either endocardium or epicardium appears to be responsible for amplification of TDR in the short-QT syndrome. The available data suggest that the long-QT, short-QT, and Brugada syndromes are pathologies with very different phenotypes and etiologies, but which share a common final pathway in causing sudden cardiac death.

Keywords:

long QT syndrome; short QT syndrome; Brugada syndrome; polymorphic ventricular tachycardia; electrophysiology

Inherited sudden cardiac death secondary to the development of life-threatening ventricular arrhythmias have been associated with a variety of ion channelopathies such as the long-QT, short-QT, and Brugada syndromes. Table 1.1 lists the genetic defects thus far identified to be associated with these primary electrical diseases. These ion channel defects have been shown to amplify spatial dispersion of repolarization, in some cases with the assistance of pharmacologic agents that further exaggerate the gain or loss of function of ion channel activity. Before examining these interactions, we will review the basis for intrinsic electrical heterogeneity within the ventricular myocardium.

Intrinsic electrical heterogeneity within the ventricular myocardium

It is now well established that ventricular myocardium is comprised of at least three electrophysiologically as well as functionally distinct cell types: epicardial, M, and endocardial cells [1,2]. These three principal ventricular myocardial cell types differ with respect to phase 1 and phase 3 repolarization characteristics. Ventricular epicardial and M,
Table 1.1 Inherited disorders caused by ion channelopathies

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Inheritance</th>
<th>Locus</th>
<th>Ion channel</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-QT syndrome (RW)</td>
<td>TdP</td>
<td>AD</td>
<td>11p15</td>
<td>KCNQ1, KvLQT1</td>
</tr>
<tr>
<td>LQT1</td>
<td>AD</td>
<td>7q35</td>
<td>lKr</td>
<td>KCNH2, HERG</td>
</tr>
<tr>
<td>LQT2</td>
<td>AD</td>
<td>3p21</td>
<td>lNa</td>
<td>SCN5A, Na;1.5</td>
</tr>
<tr>
<td>LQT3</td>
<td>AD</td>
<td>4q25</td>
<td>lKr</td>
<td>ANK2, ANK2</td>
</tr>
<tr>
<td>LQT4</td>
<td>AD</td>
<td>21q22</td>
<td>lKr</td>
<td>KCNE1, minK</td>
</tr>
<tr>
<td>LQT5</td>
<td>AD</td>
<td>21q22</td>
<td>lKr</td>
<td>KCNE2, MIRP1</td>
</tr>
<tr>
<td>LQT6</td>
<td>AD</td>
<td>1q23</td>
<td>lKr</td>
<td>KCNJ2, Kir 2.1</td>
</tr>
<tr>
<td>LQT7</td>
<td>(Anderson-Tawil syndrome)</td>
<td>AD</td>
<td>6q8A</td>
<td>CACNA1C, Ca,1.2</td>
</tr>
<tr>
<td>LQT8</td>
<td>(Timothy syndrome)</td>
<td>AD</td>
<td>3p25</td>
<td>CAV3, Caveolin-3</td>
</tr>
<tr>
<td>LQT9</td>
<td>AD</td>
<td>11q23.3</td>
<td>lNa</td>
<td>SCN4A, Na, bA</td>
</tr>
<tr>
<td>LQT10</td>
<td>AD</td>
<td>11p15</td>
<td>lKr</td>
<td>KCNQ1, KvLQT1</td>
</tr>
<tr>
<td>LQT11</td>
<td>AD</td>
<td>21q22</td>
<td>lKr</td>
<td>KCNE1, minK</td>
</tr>
<tr>
<td>Brugada syndrome</td>
<td>PVT</td>
<td>AD</td>
<td>3p21</td>
<td>SCN5A, Nav1.5</td>
</tr>
<tr>
<td>BrS1</td>
<td>PVT</td>
<td>3p24</td>
<td>lNa</td>
<td>GPD1L</td>
</tr>
<tr>
<td>BrS2</td>
<td>PVT</td>
<td>12p13.3</td>
<td>lCa</td>
<td>CACNA1C, Ca,1.2</td>
</tr>
<tr>
<td>BrS3</td>
<td>PVT</td>
<td>10q12.33</td>
<td>lCa</td>
<td>CACNB2b, Ca, B2b</td>
</tr>
<tr>
<td>BrS4</td>
<td>PVT</td>
<td>11p15</td>
<td>lKr</td>
<td>KCNQ1, KvLQT1</td>
</tr>
<tr>
<td>Short-QT syndrome</td>
<td>VT/VF</td>
<td>AD</td>
<td>7q35</td>
<td>KCNH2, HERG</td>
</tr>
<tr>
<td>SQT1</td>
<td>VT/VF</td>
<td>11p15</td>
<td>lKr</td>
<td>KCNQ1, KvLQT1</td>
</tr>
<tr>
<td>SQT2</td>
<td>AD</td>
<td>17q23.1-24.2</td>
<td>lKr</td>
<td>KCNJ2, Kir2.1</td>
</tr>
<tr>
<td>SQT3</td>
<td>AD</td>
<td>12p13.3</td>
<td>lCa</td>
<td>CACNA1C, Ca,1.2</td>
</tr>
<tr>
<td>SQT4</td>
<td>AD</td>
<td>10p12.33</td>
<td>lCa</td>
<td>CACNB2b, Ca, B2b</td>
</tr>
<tr>
<td>SQT5</td>
<td>AD</td>
<td>1q42-43</td>
<td>lKr</td>
<td>RyR2</td>
</tr>
<tr>
<td>Catecholaminergic VT</td>
<td>VT</td>
<td>AR</td>
<td>1p13-21</td>
<td>CASQ2</td>
</tr>
<tr>
<td>CPVT1</td>
<td>VT</td>
<td>AR</td>
<td>1q42-43</td>
<td>CASQ2</td>
</tr>
</tbody>
</table>

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; JLN, Jervell and Lange-Nielsen; LQT, long QT; RW, Romano-Ward; TdP, Torsade de Pointes; VF, ventricular fibrillation; VT, ventricular tachycardia; PVT, polymorphic VT.

but not endocardial, cells generally display a prominent phase 1, due to a large 4-aminopyridine (4-AP)-sensitive transient outward current (\(I_{\text{to}}\)), giving the action potential either a spike-and-dome or a notched configuration. These regional differences in \(I_{\text{to}}\) were first suggested on the basis of action potential data [3] and subsequently demonstrated using patch clamp techniques in canine [4], feline [5], rabbit [6], rat [7], ferret [8], and human [9,10] ventricular myocytes.

The magnitude of the action potential notch and corresponding differences in \(I_{\text{to}}\) have also been shown to be different between right and left ventricular epicardium [11]. Similar interventricular differences in \(I_{\text{to}}\) have also been described for canine ventricular M cells [12]. This distinction is thought to form the basis for why the Brugada syndrome, a channelopathy-mediated form of sudden death, is a right ventricular disease.

Wang and co-workers [13] reported a larger L-type calcium channel current (\(I_{\text{Ca}^2+}\)) in canine endocardial versus epicardial ventricular myocytes, although other studies have failed to detect any difference in \(I_{\text{Ca}^2+}\) among cells isolated from epicardium, M, and endocardial regions of the canine left ventricular wall [14,15]. Myocytes isolated from the epicardial region of the left ventricular wall of the rabbit show a higher density of cAMP-activated chloride current when compared to endocardial myocytes [16]. \(I_{\text{to}2}\), initially ascribed to a K\(^+\) current, is now thought to be caused primarily by the calcium-activated chloride current (\(I_{\text{Cl(Ca)}}\)); it is thought to also contribute to the action potential notch but it is not known whether this current...
differs among the three ventricular myocardial cell types [17].

Characteristics of the M cell

Residing in the deep structures of the ventricular wall between the epicardial and endocardial layers, are M cells and transitional cells. The M cell, masonic midmyocardial Moe cell, discovered in the early 1990s, was named in memory of Gordon K Moe [2,18,19]. The hallmark of the M cell is that its action potential can prolong more than that of epicardium or endocardium in response to a slowing of rate or in response to agents that prolong APD (Figure 1.1) [1,18,20]. Histologically, M cells are similar to epicardial and endocardial cells. Electrophysiologically and pharmacologically, they appear to be a hybrid between Purkinje and ventricular cells [21]. Like Purkinje fibers, M cells show a prominent APD prolongation and develop early afterdepolarizations (EAD) in response to I_{Kr} blockers, whereas epicardium and endocardium do not. Like Purkinje fibers, M cells develop delayed afterdepolarizations (DAD) more readily in response to agents that calcium load or overload the cardiac cell. α_1 Adrenoceptor stimulation produces APD prolongation in Purkinje fibers, but abbreviation in M cells, and little or no change in endocardium and epicardium [22].

Although transitional cells are found throughout much of the wall in the canine left ventricle, M cells displaying the longest action potentials (at basic cycle lengths (BCLs) ≥ 2000 ms) are often localized in the deep subendocardium to midmyocardium in the anterior wall [23], deep subepicardium to midmyocardium in the lateral wall [18], and throughout the wall in the region of the right ventricular (RV) outflow tracts [2]. M cells are also present in the deep cell layers of endocardial structures, including papillary muscles, trabeculae, and the interventricular septum [24]. Unlike Purkinje fibers, M cells are not found in discrete bundles or islets [24,25] although there is evidence that they may be localized in discrete muscle layers. Cells with the characteristics of M cells have been described in the canine, guinea pig, rabbit, pig, and human ventricles [4,18,20,23–44].

Isolated myocytes dissociated from discrete layers of the left ventricular wall display APD values that differ by more than 200 milliseconds at relatively slow rates of stimulation. When the cells are in a functional syncytium that comprises the ventricular myocardium, electrotonic interactions among the different cells types lead to reduction of the APD dispersion to 25–55 milliseconds. The transmural increase in APD from epicardium to endocardium is relatively gradual, except between the epicardium and subepicardium where there is often a sharp increase in APD (Figure 1.2). This has been shown to be due to an increase in tissue