Statistical Analysis of Cost-effectiveness Data

Andrew R. Willan
University of Toronto, Canada

Andrew H. Briggs
University of Glasgow, UK
Statistical Analysis of Cost-effectiveness Data
Statistics in Practice

Advisory Editors

Stephen Senn
University of Glasgow, UK

Marian Scott
University of Glasgow, UK

Peter Bloomfield
North Carolina State University, USA

Founding Editor

Vic Barnett
Nottingham Trent University, UK

Statistics in Practice is an important international series of texts which provide detailed coverage of statistical concepts, methods and worked case studies in specific fields of investigation and study.

With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field within each title’s special topic area.

The books provide statistical support for professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance and commerce; public services; the earth and environmental sciences, and so on.

The books also provide support to students studying statistical courses applied to the above areas. The demand for graduates to be equipped for the work environment has led to such courses becoming increasingly prevalent at universities and colleges.

It is our aim to present judiciously chosen and well-written workbooks to meet everyday practical needs. The feedback of views from readers will be most valuable to monitor the success of this aim.

A complete list of titles in this series appears at the end of the volume.
Statistical Analysis of Cost-effectiveness Data

Andrew R. Willan
University of Toronto, Canada

Andrew H. Briggs
University of Glasgow, UK
For Bernie

All author proceeds donated
to the Emma and Lucy O’Brien Education Fund.
Contents

Preface xi

1 Concepts 1
 1.1 Introduction 1
 1.2 Cost-effectiveness data and the parameters of interest 2
 1.3 The cost-effectiveness plane, the ICER and INB 5
 1.4 Outline 8

2 Parameter Estimation for Non-censored Data 11
 2.1 Introduction 11
 2.2 Cost 12
 2.2.1 Sample means for estimating incremental cost 12
 2.2.2 Using multiple regression models 14
 2.2.3 Transformation (and the retransformation problem) 15
 2.2.4 Generalized linear models 17
 2.2.5 Two-part models for excess zeros 18
 2.2.6 Cost prediction models 19
 2.3 Effectiveness 20
 2.3.1 Probability of surviving 21
 2.3.2 Mean survival time 21
 2.3.3 Mean quality-adjusted survival time 22
 2.3.4 Mean quality-adjusted survival: controlling for baseline utility 24
 2.4 Summary 25

3 Parameter Estimation for Censored Data 27
 3.1 Introduction 27
 3.2 Mean Cost 28
 3.2.1 Direct (Lin) method 29
 3.2.2 Inverse-probability weighting 31
 3.3 Effectiveness 34
 3.3.1 Probability of surviving 34
Contents

3.3.2 Mean survival time 36
3.3.3 Mean quality-adjusted survival time 39
3.4 Summary 42

4 Cost-effectiveness Analysis 43

4.1 Introduction 43
4.2 Incremental cost-effectiveness ratio 44
4.3 Incremental net benefit 49
4.4 The cost-effectiveness acceptability curve 51
4.5 Using bootstrap methods 54
4.6 A Bayesian incremental net benefit approach 57
4.7 Kinked thresholds 60
4.8 Summary 64

5 Cost-effectiveness Analysis: Examples 67

5.1 Introduction 67
5.2 The CADET-Hp trial 67
5.3 Symptomatic hormone-resistant prostate cancer 72
5.4 The Canadian implantable defibrillator study (CIDS) 77
5.5 The EVALUATE trial 82
5.6 Bayesian approach applied to the UK PDS study 86
5.7 Summary 90

6 Power and Sample Size Determination 93

6.1 Introduction 93
6.2 Approaches based on the cost-effectiveness plane 94
 6.2.1 Briggs and Gray 95
 6.2.2 Willan and O’Brien 98
 6.2.3 Gardiner et al. 101
6.3 The classical approach based on net benefit 103
 6.3.1 The method 103
 6.3.2 Example 105
6.4 Bayesian take on the classical approach 106
 6.4.1 The Method 106
 6.4.2 Example 107
6.5 The value of information approach 108
 6.5.1 The method 108
 6.5.2 Example 114
6.6 Summary 116

7 Covariate Adjustment and Sub-group Analysis 117

7.1 Introduction 117
7.2 Non-censored data 118
 7.2.1 Example, non-censored data 121
Contents

7.3 Censored data 129
 7.3.1 Cost 131
 7.3.2 Quality-adjusted survival time 132
 7.3.3 Survival time 134
 7.3.4 The Canadian implantable defibrillator study (CIDS) 135
 7.3.5 The evaluate trial 138
7.4 Summary 142

8 Multicenter and Multinational Trials 145
 8.1 Introduction 145
 8.2 Background to multinational cost-effectiveness 147
 8.3 Fixed effect approaches 151
 8.3.1 Willke et al. 151
 8.3.2 Cook et al. 152
 8.4 Random effects approaches 154
 8.4.1 Aggregate level analysis: multicenter trials 154
 8.4.2 Aggregate level analysis: multinational trials 156
 8.4.3 Hierarchical modeling 162
 8.5 Summary 164

9 Modeling Cost-effectiveness 165
 9.1 Introduction 165
 9.2 A general framework for modeling cost-effectiveness results 166
 9.3 Case study: an economic appraisal of the goal study 167
 9.3.1 The GOAL study 168
 9.3.2 Standard approach to estimating cost-effectiveness 170
 9.3.3 An alternative approach to estimating cost-effectiveness 171
 9.3.4 Comparing the two analyses of GOAL 179
 9.4 Summary 180

References 183

Author Index 193

Subject Index 195

Series List 197
Preface

This book describes statistical methods applied to cost-effectiveness analysis. It represents the experience over many years of the author’s involvement in the application and methodology of health economic evaluation. The focus on randomised clinical trials reflects the fact that the trend towards collecting not only clinical, but also economic, data alongside clinical trials was the driving force behind many of the methodological developments described in the text. Health economics is a relatively young discipline and the use of clinical trials as a vehicle for economic evaluations began in earnest only twenty years ago. As a consequence, there has been a high degree of methodological development since then, with most of the reporting confined to journal articles. The aim of this book is to draw together those developments in a single source which we hope will be of interest to students of statistics, keen to understand more about health economics, and students of health economics, keen to understand the statistical methods required for undertaking economic evaluation of health care interventions. The exposition is at a technical level roughly equivalent to that found in final year undergraduate mathematics and statistics courses or postgraduate social sciences courses.

The book itself naturally divides into two parts. The first part (up to Chapter 5) deals with the established approach for the presentation of cost-effectiveness analyses, with a focus on estimating health outcomes and resource use costs. The second part of the book (Chapters 6 through 9) handles specific issues in more depth to give a fuller understanding of the nuances of a modern cost-effectiveness analysis where patient-level data are available.
In the preparation of any book there are numerous colleagues and students who have provided the inspiration and insight, as well as friends and family who have provided the encouragement and support, necessary to bring such a project to fruition. We are extremely grateful to all those people who have helped us over the years and aided us to a greater or lesser extent in supporting our endeavours and correcting our mistakes. However, one person stands out as the true inspiration for this book. A friend and colleague who had a major influence on both of our careers in the area of health economic evaluation, albeit in different ways, Bernie O’Brien was a rare person – someone with a keen intellect, an infectious enthusiasm, and a generosity of ideas that could not fail to rub off on those around him. His untimely death on the 13th of February, 2004 was a terrible shock and leaves a vacuum in the health economics community, as well as for his wife Karen and daughters, Emma and Lucy. We dedicate this book to Bernie’s memory.
1 Concepts

1.1 INTRODUCTION

There is a growing expectation from health care policymakers that evidence supporting the cost-effectiveness of new health care interventions, particularly pharmaceuticals, be provided along with the customary data on efficacy and safety. In Australia (Commonwealth of Australia, 1990) and Canada (Detsky, 1993) there are formal requirements that pharmaceutical companies present evidence of cost-effectiveness before a drug is granted reimbursement status on a formulary. In the United States there is demand for such economic data from third-party insurers, see Leaf (1989).

There are two general approaches to performing an economic evaluation of a health care intervention, see O’Brien (1996). One approach combines the efficacy and safety data from randomized clinical trials (RCTs) with cost data from secondary, non-trial sources in a decision analysis model. In such models the problem of inferential uncertainty is addressed using sensitivity analyses to determine what effect varying the model assumptions has on the results, see Briggs et al. (1994). The other approach uses health care utilization data collected on individual patients prospectively as part of an RCT. The health care utilization data combined with the appropriate price weights yield a measure of cost for each patient. Measuring effectiveness and cost at the patient level permits the use of more conventional methods of statistical inference to quantify the uncertainty due to sampling and measurement error. Since the early 1990s, when such data became